V. INTERFEROGRAM ANALYSIS

175



176



10
InterferogramAnalysis Oveariew

Interferogram Analysis Methods

Single Interferogram Techniques Multiple Interferogram Techniques
(12) Phase-Shifting Interferometry (PSI)

12
5 (12)
‘—_i,‘ Fringe-tracking methods Fourier-transform Simple algotithms Complex algotithms
© identifying fringe extrema methods known phase step unknown phase step
S (11.2) (11.3) (12.2) (12.5)
()
Q choosing the calculate phase steps
o bandpass filter (12.5.2)

(11.3.3)

apply least-squares
(12.2.3)

Domain
Determinatioﬁ_.

(14a-d)

Figure 1.Flowchart-outline of the interferogram analysis methods discussed in this disseftaéiaiapter and sec
tion of each subject are shown in parentheses.

177



InterferogramAnalysis Overiew

10. INTERFEROGRAM ANALYSIS OVERVIEW

“In any interferometric optical testing procedure the main objective is to determine the
shape of the wavefront measured with respect to a best fit sphere.” (Malacara and
DeVore 1992)

Fundamentallyinterferogram analysis is the solution of an inverse problem for which more than
half of the information is missing and the data is coarsely samfateidtensityfringe patternis recorded
at a location removed from the optical system under test, and the central questiaat &ectric field in
the exit pupil produced the measured intensity distribution?

This section, comprised of Chapters 10 through 15, is dedicated to the practical solution of this
inverse problem, with specific attention paid to interferogram analysis ofieigiferometric datalhe goal
is to retrieve the wavefront produced by the optical system under test. Following some simgaifying
tions, this dificult inverse problem becomes tractable and yields to rapid automated analysis methods.

Historically, methods for interferogram analysis have been divided into two main categories by
their use of either single or multiple recorded interferogram images. Figure 1 outlines some of-the avall
able methods and shows in which section of this thesis they are discussed.

Thesingle interfeogram analysis techniqug¢€hapter 1) use either the fringe profiles or a
Fourierdomain analysis of the intensity data to recover the pf&asd-ourier-transform methods resis
tant to noise and can be highlfieknt and very simple to applidowever it suffers from low spatial-
resolution and can be vulnerable to errors in the presence of abrupt features in the data.

Although more time-consuming and generally more challenging to implement than those involving a
single interferogram, theaultiple interfeogram techniquefChapter 12) combine several separate-mea
surements to gain a significant statistical advantage. Utilizingethporaldomain of measurement by
introducing a relative phase-shift between separate measurements, these Phase Shifting Interferometry
(PSl)methods are able to achieve high accua@yhigh spatial resolution. In the presence of imperfect
data, howeverthe price paid for this higher resolution and accuracy is a significantly mficeltifrocess
of analysis, required to be robust in the presence of noise.

Once the phase is known, most analysis techniques require one, fenitieal step Typically, the
phase is only measured to within an integer multiplerpfa®d for each fringe in the interference pattern
there can be an accompanyimgdiscontinuity contourTo remove the presence of these discontinuities,
the data must undgo aprocess calleghase unwrappingdlthough innocuous in appearance, the process
of phase unwrapping (Chapter 18)n itself a challenging inverse-problem and, in the opinion of the
author is the most difcult aspect of interferogram analysihe literature is filled with phase unwrapping
techniques for all occasions, and there appears to be little agreement as to the best approach.

After the wavefront phase has been successfully unwrapped, interpretation of the data often
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requires that the measured surfaces be cast into a convenient set of orthogonal surface polynomials, such
as the Zernike polynomials (Chapters 14 and 15). Once a coordinate system has been established for the
data, the surface fitting can proceed in several ways, with some methods more appropriate for accurate
analysis than others.

The procedures and techniques described in these chapters cover the process of interferogram
analysis from start to finish, following severalfdient paths. More than just a recitation of available
methods, these chapters also introduce several novel procedures developed by thadudhimg the
Fourier-Transform Method of Phase-Shift Determinat{@hapter 12), developed to addreséidifties
with phase shift calibration, and tReurier-Transform Guided Unwrap Methd@€hapter 13), created and
successfully employed to overcome significant high- and mid-spatial-frequency noise in the raw phase
data. In addition, to facilitate accurate wavefront surface fitting and representation in terms of the aberra

tion polynomials, an expedient Gram-Schmidt orthogonalizationess (Chapter 15) is described.
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11.1 INTRODUCTION

Several methods of single-interferogram analysis are available when phase-shifting methods cannot
be applied. Procedures that determine the positions of the fringe maxima or minima, or that utilize
Fourierdomain processing, all rely on the same assumption: intensity variations causegHeystud
the test beam can be separated from those caused &aypieidealone Although this assumption makes
these analysis methods highly sensitive to amplitude fluctuations that distort fringe positions, proper filter
ing of the interferogram data can greatly enhance the reliability of single interferogram analysis methods.
This section provides a description of several of these methods and discusses their application.

The methods that scan the interferogram searching for local maxima, minima, or zero-crossings of
the derivative are known &snge-trackingor fringe-centertechniques. Often the discrete derivative of the
interferogram data is used to locate these contours of constant phase, each separated from the next by one
wavelengthAfter the distinciphase contours are properly ordered, a (typically sparse) representation of
the wavefront surface enugs.A wide variety of intensity-based fringe-tracking strategies are discussed
by Yatagai (1993). In general, fringe-tracking methodfesdifom non-uniform spatial sampling, and risk
overlooking sub-wavelength variations in phase.

Since the advent of computgided data collection and image -processing in the last few decades,
fringe-tracking techniques have become less widely used. Other techniquederaigofficantly higher
resolution and accurachiistorically, howeverthe fringe-tracking methods have proven very successful,
and thus merit a brief discussion héreese straightforward methods were applied at the earliest stages of
this EUVinterferometry research.

A separate class of procedures, Foarier-transform techniquesitilize the spatial-frequency
domain to separate low-to-mid spatial-frequepbgsemodulations of interest from lowétrequency
amplitudemodulations and high-frequency noi$gpically a spatial carriefrequency is introduced to
facilitate this Fouriedomain separatiomhe Fouriestransform method, first described Bakeda et al.

(1981), has spawned a great number of adaptations and related techrigufaadamental aspects of the
Fouriertransform method are described in this chaptéh emphasis placed on the practical application of
these methods to EUNiterferometry

11.1.1The Monotonic Phase Requirement

Although the various fringe-tracking and Foutieansform methods ddr greatly in their approach
and implementation, both types impose one important requirement on the measured wavefront phase.

Proper analysis requires ttet intensity maxima and minima represent points where the
local phase is separated from other minima/maxima by an integral numbecyafl@s (or
wavelengths)).
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Figure 1.Interferogram intensity extrema

2\ (4m) s iNteNSty Maximag=n A occur when either of two conditions are met:
wavefront @ intensity minimagp= (n+1/2) A the phase equals a multiple af or the phase
phase o false maxima function itself reaches a maximum or mini
A(2m) mum.To guarantee successful analysis, the

singe interferogram techniques require that

the latter case, illustrated by the central point
0 of the graph, never occurs within the mea
1 surement domairhe figure shows the core
) ) spondence between each intensity extrema
intensity. —o- and the phase function.
position

This requirement removes potential ambiguities from the data. In some cases, filtering must be
used to remove the isolated, spurious local maxima created by high-frequency noise. Excluding such
noise, this rule applies mainly to low-spatial-frequency variations.

Consider Fig. 1, in which this requirement is violated and such phase ambiguity is illuStnéded.
figure is based on the one-dimensional expression

I(x) = A+ Bcod@(x)] , 1)
with A= B = 1/2 and a parabolic phase function. (This discussion can easily be extended to two dimensions,
where a similar rule applieyl but one of the local minima and maxima are seen to correspond to points
where the phase crossgg) = nA/2 waves (onrtradians). Notice that in the center of the graph the local
intensity maximum (indicated by a gray circle) corresponds to a local minima of the phase functim, and
to a specific multiple ok/2 in phase. Suchfalse maximunsan corfuse the fringe tracking analysis meth
ods: it may be counted erroneously as a position whereA/2 waves.

This requirement can be illustrated mathematic&lipm Eq. (1), the condition for an intensity
extrema is

di(x)
dx

=0= —B%gn[cp(x)] _ )

This condition is satisfied in two cases: first, where the phase function has a minimum or maximum

de(x) _
v 0, ©)

and second, where the phase function cregseadians, (onA/2 waves).
sinf@(x)] =0 O ¢(x) = nt[radians] = % [waves] . @)

In order to guarantee that over the measurement domaimihextrema come fronp(x) crossingni/2
waves, there must exist no point in the domain at which Eq. (3) is sat®fiscorings us to threequiva
lentrequirements og(Xx).
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1. @(X) must not contain an extrema within the domain of measurement.
2. @(x) must bemonotonicwithin the measurement domain.
3. dg(x)/dx # 0 within the measurement domain. In two-dimensions, this requiremignt4g.

A spatial carriefrequency ortilt, is introduced to satisfy this monotonic phase requirement. Beginning

with a phase functiop,(x) containing zero average slope, add or subtract a tilt complkxent
@(x) = @y (x) —kx. 5)
Using requirement 3 above, one statement of the monotonic phase requirement becomes

dep, (X)
b <k (6)

The test wavefront slope must neither equal nor exceed the slope of thefiagtiency wave.

Experimentally this places more of a requirement on the cafrézruency than it does on the test
wavefront.The carrieifrequency can usually be controlled to some extent, while the test wavefront is
determined by the optical system being measured.

This slope restriction alone doest place a limitation on the highest measurable spatial-frequency of
the test wavefront. In principle, high-frequency components of small phase amgdituztemeasured as
long as the slope does not exckeBor example, if the phase functigg(x) contains a single spatial-frequen
cy componenk, such that

®o(x) = Asin(kaX) @)

then the limitation on the amplitudeimposed by Eg. (6) is

k
A< ®)

In practice, there will be a wide range of spatial frequencies and amplitudes preggxt ithis simplis
tic model requires that high-frequency components have smaller magnitude than the low-frequency com
ponents, to impose an upper limit on the plelgpe.

The limitation on the highest allowable slope comes from the Nyquist limit (Nyquist 1928). IR princi
ple, the sampling density cannot be lower than two points per fringe or the pattern will be unmeasurable.
The width of the detector elements may also contribute to a reduction in measurable fringe contrast if the
fringe density is too highilhere are sub-Nyquist interferometry (SKig¢thods that rely oa priori wave

front information (Greivenkamp 1987).

11.2APPLICATION OF THE FRINGE-TRACKING METHODS
This section is a brief digression into the application of fringe-tracking methods of interferogram

fringe pattern analysid.hese methods were used in the early stages of theifielNerometry research,
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applied only to the Fresnel zone plate measurements. (Once the more sophisticatettrdrmiaen meth
ods of single interferogram analysis were successfully implemented, they quickly replaced fringe-tracking.)
Assume, for the purposes of this discussion, that a spatial daedeency has been introduced to
generate a fringe pattern with a generally-horizontal fringe orientation. Contours of constant phase chosen
for analysis may be those of the intensitgsxima theminima or the so-callede-crossingsThe zero
crossings are the inflection-point contours of the fringes.
One procedure for locating the fringe maxima uses the discrete derivative of the intensity along
each column. Consider an interferogrgm y) on a rectangular grid of si2g, x Ny.

Procedure 1: Fringe-Tracking Method Using Fringe Maxima.
1. Loopi from 1 toNy

2. dg) = 13, j+1) — I3, j) (single-column dis@et derivative)

3. i*={j|d(j) =0 AND d(j+1) <G (set containing locations of the maxima)
3a j*={j|d(j) <0 AND d(j+1) > & (alternately the minima may be used)

4, Add points {(, j*)} to the set of maxima from which the contours are constructed.

4a. [Optional] Keep track of therder of these points vertically

4b. [Optional] Use polynomial fitting of the neighboring points to more accurately

locate the individual maxima, allowing the elementg &b take non-integral values.
5. Sort (order) the contour data into separate, “continuous” contours.

In Step 2, the maxima are identified as points where the derivative goes from non-negative to negative. Of
course, noisy data can generate spurious maxima; the data may require filtering in the vertical direction.
The median filter and various other low-pass filters have been recommeradagaiYL993).

Sorting the contour data means identifying the corfiaarto which each maxima point belongs.
This procedure is also calléinge omdering.When the contour lines are unbroken and span the width of
the arrayas is the case in Fig. 2(b), this exercise is almost trivial to perform. Howfaher data exists
on a limited sub-region, if contours are discontinuous, or if the contours deviate significantly from a pre

b) 0) d)

(6]

N W b

i

ABC D
Figure 2. lllustration of the fringe-tracking method, with sortinghe vertical-direction derivative is used to locate

the extrema of the interferograms in (a) andTbe positions of these extrema, shown in (b) and (d), trace contours

of constant path-length-dérence between the two interfering beams. Each contour is separated from the next by one
wavelength of path-length-dérence Analysis requires that each contour be regarded separately from its neighbors in
a process known a&drting. Numbers indicate the index of the sorted contdtisen the contours span the width of

the domain, sorting by examination of the columns is trivial. Howevleen the domain does not reach the edges of

the array or contains obstructions, automated sorting procedures become complex.
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dictable direction, then the sorting algorithm may require a flexible approach. Fig. 2(d) shows a case
where a flexible sorting routine is required. Notice here that scanning upward (or downward) along the
columns indicated by the linés B, C, and D, a simple conteaounting algorithm would erroneously
attribute adjacent maxima points tofdient contours. If the fringes do not reach the edge of the measure
ment domain, care must also be taken to avoid falsely attributing maxima or minima to points near the
domain edges.

One severe limitation of the fringe-tracking techniques is the relative sparseness of the sampled
wavefront contour data. If the fringe separation corresponNgtrels on average in the detector mea
surement domain, then the coverage of the measurements is approxinhatelyh#/ total number of
available pointsAlthough this may béhousand®f points, since those points are arranged along narrow
stripes, the surface fitting and subsequent wavefront reconstruction may yield spurious wavefrent curva
ture in regions not covered by the contours.

The decision on whether to use the maxima, minima, or zero-crossings depends on several compet
ing factors. In the presence of noise, the signal-to-noise ratio is often highest at the peaks of the intensity
pattern. Based on this alone, maxima location would appear to be more accurate than minima location.
Complicating this assumption is the fact that variations of the background intensity or of the fringe ampli
tude can shift the locations of the extrefilaese competing concerns must be addressed in choosing the

best algorithm.

11.3 FOURIER-TRANSFORM METHODS

Since the early part of the 1980s, Foutransform techniques for interferogram fringe pattern
analysis and wavefront recovery have gained widespread acceptance as the leading methods for single-
interferogram analysis @ikeda et al. 1981, Nugent 1985, Bone et al. 1986, Kreis 1986, Roddier and
Roddier 1987). In addition to their versatility and ease of application, the Ftarisform techniques
hold other more significant advantages over the fringe-center metfibése Fourier methods often eon
tain spatial-frequency filtering as one component of their application, and are thus more resistant to the
presence of high-frequency noise, low-frequency background variation, and low-frequency fringe-ampli
tude variations. Furthermore, these methods generate wavefront data over the entire measurement domait
unlike the sparsely-sampling fringe-center methods.

In this thesis, Fourietransform methods are used in the analysis of all of the Fresnel zoneplate
data (Chapter 3) and for various measurements of the Schwarzschild objective where phase-shifting data
is unavailable (Chapter 8).

The Fouriettransform methods are easily understood from consideration of the spatial-frequency-
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spectrum of the interferogram dafa. begin, theeal one- or two-dimensional interferogram data is-rep
resented by additive and multiplicative intensity compondititese components of the fringe modulation
represent the stationary and the modulated intemsipectivelyAs in the other single-interferogram

techniques, a spatial carrgequencyk, is introduced to facilitate analysis.

I(r) = A(r) + B(r) co 9, () + k, ], with A B,q, OR. (9)

Successful implementation of the Foutiensform techniques relies on frequency-domain separa
tion of the interferograrphasemodulation from themplitudemodulation.This requirement puts limita
tions on each term of the interferogram as represented in Eq. (9), and on the spatiditerparaacy as
well. A(r), B(r), and@(r) may contain both low- and high-frequency variations, but there must be a range
of spatial frequencies over which these functiongyaret (arbitrarily small in magnitude)he spatial
carrierfrequency is used to shift the phase-variations of interest intquhésregion of the domairnrhe
range of phase modulation spatial frequencies that is available for accurate analysis is primarily deter
mined by the spatial-frequenayidth of the quiet region.

Since the two terms in Eq. (9) are additive, it is always possible to attribute all of the high-frequen
cy variations in the interferogram &fr) alone. (This is not true for phase-shifting analysis (Chapter 12),
in which the stationary components are separable from the modulated components of the)intensity

To facilitate the Fouriedomain representation of the interferogram, the cosine may be separated as

follows.
1(r) = A(r) + 3 B(r)ell (Vo] 1 1 g(p)grilen(r) o] (10)
1(r) = A(r) + C(r)e*o™ + C* (r)e ™ , (11)
where C(r) = 1 B(r)e®") 12)

and * indicates theomplex conjugaté-rom Eg. (1), the Fourietransform of the interferogram may be
written

i(k) = a(k) +c(k — ko) +c*(k +k,). (13)
Here, functions denoted by upper case letters are used to indicgpatiaé(measurement) domain, and
lower-case letters denote the Foutiemsform of each(The definition of the discrete Fourgansform, as
applied to interferogram data, is discussed in SecfidhZ)The phase information we seek is contained in
c(k —ky), or equivalently irc*(k + k). The addition of the carridrequency facilitates the separation of
eitherc(k — k) or c*(k + ko) from the other components of the spatial-frequency spect(ém.k,) and
c*(k + ky) form separatside-lobesentered otk and—k, respectivelyThe isolation of one side-lobe is
our immediate goal.

Sincel(r) is real, its Fourietransformi(k) is Hermitian, indicating
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i(k) =i*(-k). (14)

The amplitude of the spatial-frequency spectrifk)||has polar symmetry about the central, zero-frequen
cy componenta(k) is also Hermitian and typically contains a strong peak near zero-frequelatgd to
the overall intensity of the recorded interferogram.

Depending on the phase aberrations present in the system unaearidst, typically consist of a nar
row peak near zero-frequendyre presence of the carrieequency shift andc* by k, and K, respective
ly, where they can be isolated from the other spatial-frequency-domain components of the spectrum.

Applying toi(k) a bandpass-filter centered abkyt(alternately about k) in the spatial-frequency
domain achieves several of our goals. One of the compot(&ntsk,) or c*(k + k) is isolated from the

rest of the frequency spectrum. Symboligally
i"(k) = Filtered, {i(k)} = Filtered, {a(k)+c(k —k,)+c* (k +ko)} = c(k =k,). (15)

Filtering destroys the Hermiticity afk), and Fourieinversion ofi'(k) produces an approximation to the
complex functionC(r). C(r) is only approximately known due to the necessary spatial-frequency-domain
filtering and the possible overlap afk) andc*(k). Filtering strategies are discussed in Sectibi.B.

Fourierinversion of the filtered interferogram returns us to the spatial domain.
FHi'(k)} =C(r)e*e" = 1 B(r)e® () ko, (16)
The wavefront phase information is contained in the exponential term. Here there are several
equivalent ways of determinirgy(r).

L Om{c(r)}

0,(r) +ko O =tan =60 E: tan‘l(lm{C(r)}, Re{C(r)}) = tan‘l[C(r)] . (17a b, ©)

or, equivalently Q(r) +ko O = Im{ln[C(r)]} : (17d)

Note that the additive terky D behaves simply as a removable waveftdnadded to the phase function
of interest. Regarding the arctangent, certain computer applications require thegnmerds to be pro
vided in one of the equivalent formats shown in Eqns. (17a) through (17c).

Since the arctangent and the complex logarithm are periodic funapjgrsis only determined to
within a multiple ofrtor 2rt Equation (17a) returng,(r) as a modulat function, while Eqns. (17b)
through (17d) returg,(r) modulo 2t This common aspect of interferogram analysis leads to the necessi
ty of phase unwrappingp remove the ambiguity caused by this loss of information, and to re-create a
continuous wavefront. Phase unwrapping is the subject of Chapter 13.

Regarding the Fourignverse-transform of Eq. (16), Nugent (1985) recommends the optional step

of shiftingthe filtered interferograrii(k) by +k to shift one of the symmetrifk) lobes to the zero-fre
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guency positiorbefore the inverse transform is performed. In so doing, the bandpass filter will be centered
on the zero-frequencgnd all or most of the tilt will be removethe diference here is mainly cosmetic. If
the carrieffrequency is precisely knowthen@,(r) may be recovered directly from the methods of Eqns.
(17a) through (17d)Vhenk, is known only approximatelyhe shift in the spatial-frequency-domain
reduces the amount of wavefront tilt addedytr), and potentially eliminates a ¢@ number of wrap

ping transitions caused by the moduforgconstruction ofp,(r).

Now that the mathematical framework has been established, the following two sections address issues
related to the practical application of the Foudtiansform methodlhe first section briefly discusses the-dis
crete Fourietransform (DFT), and the second addresses the selection of the-Houoran filter used in the
Fouriertransform method.
11.3.1The Discrete Fourier-Tansform

Interferogram measurements are generally collected on a square-grid, discrete domain.
Consequentlyall Fouriertransform operations required by the methods described in the previous section
are performed on this domain. In order to study the application of various Faomein filters, we
begin with the conventional definition of the discrete Fotrignsform (DFT) (Conte and de Boor
1980:277-83). For an arbitrary functi@qr), with r = (x, y), defined on the discrete, two-dimensiomdl,

x N domain, the Fourietransform operation is defined as

N-1 .
F{o()} =ok)= T 6(r)ewir (kI)E, (19
o
or, equivalently F {G(x, y)} = g(kx, ky) = N_1G(x, y)expgil—n(kxx + kyy)E. (19)
x=0
y=0

Here, uppercase functions denote the spatial domain, while their loase counterparts refer to the
domain of spatial-frequencieBhe position vector in the spatial-frequency doniaias defined incycles

The inverse transform is defined as

FH{o(k)} =G(r) =

1 &t 0 i2m C
NG g(k)expa W(k E)E’ (20)

0
0

Ky
ky
with an analogous expression fot{g(x, y)}. The coeficient 1N2 in the definition of the inverse trans
form guarantees that

FHr{c(n}} =a(r). (21)
Note: In many circumstances, computationfiteicy is greatly enhanced by the application of the so-
calledfast Fouriertransform(FFT). The FFTalgorithm optimizes the computation of the discrete

Fouriertransform, although mathematically it is identical to the DFT
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11.3.2Analogy Between the Continuous Fourierrdnsform and the DFT
The DFTis actually a special case of the continuous Fotrégrsform; considering it as such sim
plifies the description of filtering presented in the following section. For an arbitrary funtfiprefined

in thex-y plane, and periodic ir andy with periodN, the Fourier transform df(r) is

F{H(r E} } expgz—n( )gir (22)

In the conventional definition, theqamment of the exponential ik-r. Here, for analogy with the DFT

case, the coétient 2r/N has been extracted frokyp makingk equivalent tof in the common definition.
The combfunction helps to make the transition between the continuous and the discrete domains.

The comb function may be defined in two similar ways:

1, xOlIntegers o _
othewise © comb(x) = % &(x-n). (23)

n=-o0

comb(x) =
It is easily shown that the Fourigansform of the comb function in one dimension is
F{ comb(x z S(k=n) (24)

n=-o

Again, a comb function in the spatial-frequency domaidirect analogy extends to two dimensions where

comb(r) = comb(x,y) = i i 3(x - nx)é(y— ny) , (25)

and comb E i i 6(k —n) (26)

When the comb function is included in the Foutifansform, the continuous Fourigansform
integral reduces to the DFSUmmation in Eq. (18). By the Convoluti®heorem (Goodman 1988:10),
including the comb function with an arbitrary function in a continuous Fetieiesform produces the
Fouriertransform of the arbitrary function, defined only at discrete posititms.important result
enables us to simplify the discussion of bandpass and other filters applied within the transferm
method of analysis: the discrete Foutimnsforms follow their continuous counterparts, but are defined
only on a square-grid, discrete domain.
11.3.3Spatial-Frequency-Domain Filtering

Extraction of phase information using the Foutransform methods of interferogram analysis
requires the application of bandpass filters in the spatial-frequency domain. Selectioopsintiuenfilter

is a highly complicated process that may in fact require a case-by-case approach. Hmwvevalrof the
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most important filter characteristics can be identified and enumefdtedsection defines general criteria
for filter selection, and investigates the application of a Gaussian filter of arbitrary width.

11.3.3.1General Filter RequirementJ hree general filter requirements are discussed in this section.

1. Side-lobe isolation.
2. Use of symmetric, real filter functions.
3. Smoothly varying filter amplitude (optional).

Definet(k) as a filter function in the spatial-frequency domain) andt(k) are a corresponding
Fouriertransform pairwith T(r) defined in the spatial domain of measuremeéhe filter is applied by
multiplying the spatial-frequency spectrum by the frequency-shifted filter function.

1. Side-lobe isolationThe foremost goal of the filter is to isolate one of the side-lobes of the spa
tial-frequency spectrum, containietk—k ), or c*(k+k,), as described in Sectiod.B. These symmetric
lobes contain the phase information of inter€se magnitude and direction of the displacement is deter
mined by the spatial carriérequencyk,.

The minimum requirement for side-lobe isolation, recommended by some authors (Macy 1983,
Kreis and Juptner 1989) is a simpialf-plane filter displaced slightly from the central frequency to
transmit only one side-lobe. In this simple case, the high-frequency information (including noise) is pre
served in the measured phase data.

A different approach is to transmit only a bounded region centered on one of the side-lobes.
Examples of bounded filters are ttiecular (or elliptical) top-hatfilter and theGaussiarfilter, which,
although technicallyot bounded, decays rapidly toward zero over a short distance from the side-lobe
center In the displacement direction (parallelkig), the size is constrained by the separation of the side-
lobe and central-lob&his situation igirectly analogous to the design considerations of the physical spa
tial filter window in the PS/PDI (Section 5.10)here is no such filter size constraint in the complemen
tary (perpendicular) direction. In the direction, the maximum allowable size is constrained by the width
of the central lobe. Cleatamer filter widths allow the transmission of relatively more high-spatial-fre
guency information; but to avoid overlap, filter radiigar thanK|/2 should not be use&hen measure
ments are primarily concerned with only the lowest spatial-frequency aberrations,rawevyfilter can
be highly efective at significantly reducing noise.

When using a bounded filter function, the filter should be centered on the side-lobe peak-(i.e. cen
tered ontk,) to avoidintroducingphase errors into the calculatiMthenk, is not known in advance, it
may be determined approximately by searching the spatial-frequency spectrum for a peak absolute value
(or peak square-modulus), excluding from the search a small domain centered about the zero-frequency
peak. Of course, since the spatial-frequency spectrum is Hermitian, there will be two peaks, one of which
must be selected.
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2. Use of symmetric, eal functions.When selecting a filteit is helpful to remember that the
complex function of interes€(r) from Eq. (12), will be convolved with(r) by the filtering process(k)
must be carefully selected to ensure (@) does notntroducephase décts into the data. Requiring
T(r) to be symmetric and real (except possibly for a leading complex constant) imposes the requirement
thatt(k) also be symmetric and re@he simple half-plane filter described above is actually justge lar
rectangular window filter defined on the periodic domain and displaced from the central fredinency
top-hat and Gaussian filters are also symmetric filters displace# py

3. Smoothly varying amplitude. This optional requirement is imposed to redtinging introduced
by the filtering process. Filters with sharp features (high slope, or discontinuities) in the spatial-frequency
domain maycreatephase oscillations in the measurem@ntiscontinuity int(k), for example, may intro
duce alternating positive and negative lobesTiftd and, by convolution of(r) with thesealternating
lobes, cause ringing near any sharp feature in the data. Experience has shown that ringing plagues the us
of both the half-plane (rectangular) filter and the top-hat filtee Gaussian filter is a logical choice to
eliminate the ringing problem: its transform is also Gaussian and contains no alternating lobes.
11.3.3.2The Gaussian Filter

For this discussion, a Gaussian filter is defined in the continuous spatial-frequency domain in two
dimensions as

to(k) =& /", (27)

The radiux at which the X amplitude is reached is called thalth of the filter The two-dimensional
Gaussian filter is separable into a product of two one-dimensional filters defined for any two perpendicu
lar directionsA rotationally symmetricircular Gaussian filterwith two equivalent axes, may be defined.
In other cases, it may be desirable to defineltptical filter with two widths corresponding to the
“semi-major” and “semi-minor” axes.

It is easily shown in one dimension that the continuous Feumierse-transform of the Gaussian

filter tg(K) is also Gaussian. Neglecting leading Gioents not important to this discussion, we have

0 kfO
tg(k) = ex 0 T(x)Oex B—Q—g 28
o(k)= PE G0 0 a(X) Dexpl B (28)
The width in the spatial domaM/Tik is inversely related to the width in the spatial-frequency domain, as
expectedThis shows that aarrow Gaussian spatial-frequency-domain filter convolves the phase data
with abroad Gaussian function and vice versa.
The application of circular Gaussian filters in the Fottriznsform method of interferogram analysis

is illustrated in Fig. 3. Here, six filters of varying widths are separately used in the analysis of a simulated
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Detail of Fourier-transform (scaled for display)

K =10.0 cycles K = 12.5 cycles K = 15.0 cycles

Figure 3.lllustration of the Fourietransform method of single-interferogram phase-retriéis. simulated interfer
ogram (@) contains wavefront aberrations, noise, background variation, and bleAiShessian filter is applied to

the spatial-frequency-spectrum (b) to isolate one of the side-lobes. Here, for purposes of illustratidaresix filif

ters of varying radius are usékhe spectral width of the six filters is indicated by the concentric circles ift{p).
modulo 2t phase functions are shown in (c) through (h) for each filter width. Notice that &)-cycles wide, is

clearly overfiltered while (g) and (h) arenderfiltered, enabling the blemishes to cause serious phase errors that will
complicate the unwrapping process.
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interferogram patterhe 256x 256 pixel interference pattern contains numerous imperfections common
to experimental datdhe curvature of the fringes indicates imperfections in the underlying wavefront.
Both high-frequency random noise and a low-frequency additive background intensity are poesiemt.
ulate blemishes in the test optic or on the detgtiterinterferogram is multiplied by a randomly-generated,
high-contrast, mid-spatial-frequency pattern.

The interferogram is shown in Fig. 3(a) and a detail of the central portion of the spatial-frequency-
spectrum is shown in 3(b), logarithmically scaled for displég concentric dashed circles placed on the
first-quadrant side-lobe of Fig. 3(b) indicate the widths of sifediht Gaussian filters used in the analy
sis. For each filtetthe wrapped phasemap, calculated using the Fduamigsform method, is shown in
Figs. 3(c) through 3(h).

The phase-discontinuities on the wrapped phasemaps follow the fringes closely over the circular
measurement domain. Notice that in Figs. 3(c) through 3(e), where heavy filtering (a narrow filter) is
applied, the mid-spatial-frequency blemishes and the high-frequency noisteatieedy removed from
the analysis. In 3(c), with the strongest filtdre calculated phase clearly fails to match the curvature of
the wavefront seen in the raw fringe pattéts the filter width is increased in 3(f) through 3(h), more fre
guency information is preserved f&fts related to the blemishes are first clearly visible in 3(f). In 3(g)
and 3(h), the filtered region in the spatial-frequency domain begins to overlap both the central lobe and
the side-lobe. Here, the phase-slope between the discontinuities appears to be néistndae blem
ishes begin to create singular discontinuities in the phasemap. Observe the cusp created by the blemish
just to the left of the image cent&uch a cusp will create phase-unwrappinfjatifties when the con
ventional phase-unwrapping methods are applied.

One procedure for the implementation of the Fourmsform method of interferogram analysis,
using a Gaussian filtemay now be outlined (Procedure 2). Begin with a squdreN interferogram
Io(X, y). The Gaussian filter here defined in Step 5 may be replaced by any other suitablghéiterare

several nearly-equivalent representations of the arctangent application in Stepn@tively, it may be

represented by ta#{ Im[1;(x, y)], Rel,(x, Y)I}, tamr{ Im[1,(x, y)I/Re[l1(x, Y)1}, or Im{log[l11(x, )1} -
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Procedure 2: The Fourier-Transform Method
1. (i, j) = F{I,x )} (perform the FFTor DFT operation)

2. 10, ) =1G, j) * {1 — exp[-2 + j3)/22]} (define a copy of thedguency speatm; use a
Gaussian filter to eliminate central lobe)

3. (i i) = location of maximum off,(i, j)| (locate side-lobe peak: thermre two, pick one)

4. k=10 (define a Gaussian filter widt 10 cycles is arbitrar)

5. tgi, j) = exp[—(2 + j3)/kZ] (define the Gaussian filter)

6. c(i,j)=tgli —im j—Jm) * f(i, j) (to isolate one side-lobe, apply the filtehifted to
the location of the side-lobe maximum)

7. 1% y) = FYc(, j)} (inverse transform)

8. qx y) =tamyI,(x, y)} (determine phase)

For clarity Procedure 2 was written in an expanded form, with each term defined in a separate step.
All of the steps may be combined into drensform-filtertransformrepresentation, provided that the
position of the side-lobe maximum is known in advance.

Procedure 2a: Concise FourierTransform Method

1. @ y) = tam i F exp{ (-2 + (dmA/K2} * F{Iox V)]
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12.1 INTRODUCTION

The addition of computers and compttentrolled equipment into the fields of interferometry and
optical testing opens the door to a npawerful class of data-gathering and analysis methods known col
lectively asPhase-Shifting Interfemetry (PSI). This chapter introduces some of the basic and extremely
useful PSI algorithms and then describes a novel, versatile approach designed specifically to overcome
limitations of the first implementation of the EURS/PDI described in this thesis.

Although highly efective in some instances, single-interferogram analysis methods are fraught
with restrictions and limitations (Chaptet)1Because the single-interferogram techniques rely on the
location of “fringe-centers,” they are caught in a tradébefween precision and the desire for a high
number of sampled data points. Most of these methods can only operate under conditions of high wave
front tilt, where the addition of a spatial-carffegquency is required to remove phase ambiguities. In
other cases, the requirement is that there be no closed fringe cobarsonly one interferogram is
collected, additional information is required to determine the ova&gallor polarity of the wavefront
(i.e., concave or convex).

PSI overcomes many of the problems that plague single-interferogram analysis methods. PSI,
which was first described by Carré in 1966 and fully developed in the 1970s (Crane 1969; Bruning et al.
1974;Wyant 1975), utilizes theemporal domairio collect a series of interferograms where only the ref
erence phase of the interferometer is adjusted. Using the multiple interferograms, the wavefront phase is
recovered atach pointin the domain independently from its neighbdise addition of a spatial-carrier
frequency is not required, the necessity of finding fringe-center locations is eliminated, and the wavefront
polarity may be found unambiguoushkurthermore, using only the time-domain to find the phase at each
point enhances the potential for high-spatial-frequency measurement. Unlike the single-interferogram
techniques, PSI is capable of overcoming spatial variations in the detector response (sensitivity).

There are many available ways to implement the reference phase-shift required by PSI. One of the
most common is by translation of a mirror in one arm ofw@yman-Green or Mach-Zender interferometer
(Soobitsky 1986; Hayes 1989)he angle of a tilted, plane-parallel, transparent plate placed in the refer
ence beam can be adjusted to induce a path-length chagyget@&#d Shagam 197@&)ternatively a
small change of the optical frequency may be used in some cases to produce the required phase-change.
The method used in the ELRS/PDI is the translation of a grating through the beam of light, such that the
diffracted beams acquire a phase-shift relative tatickffracted,zeroth-order beam.

However the phase-shift is implemented, the analysis methods are.dinslamost convenient to
describe the measured interferogram intensity with two tersisitianar term and anodulatedor

phase-dependetgrm representing the fringes and their amplitude modulation.
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I(r,t)=A(r)+ B(r)cos[(p(r) +A(t)] . (1)
In Eq. (1), the relative phase-shift between the test and reference beams is absorbed into the time-depen

dent termA(t). When a finite number of images are recorded, and the system is held stationary during
measurement, the individual interferograms can be written as
In(r) = A(r) + B(r) cogo(r) + &y 2

The following sections of this chapter are dedicated to the phase-retrieval problem: dindling
given a series of recorded interferograitsere are limitless varieties of phase-shifting algorithms tai
lored to meet the specific demands of a wide range of experimental condisangntioned previously
each of these methods utilizes temporaldomain to achieve a relative phase shift between the test and
reference waves while all other experimental conditions are held stable.

In principle, the analytic solution of Eq. (2) with its three unknowns requires that three or more
interferograms be included in the analysis. In most cases, numerous solutions exist; considerable research
has been dedicated to finding optimum methods of analysis in a variety of experimental coAdiéans.
of the most basic algorithms are presented here to demonstrate the available means of reducing-experimen
tal uncertaintiesThese methods, based on strict assumptions about the linear or non-linear phase-steps, are
here referred to as tl#mple techniquesn contrast, theomplextechniquegpresented in Section 12.4
make no such assumptions about the phase-sHigscomplex techniques are used exclusively in the

analysis of phase-shifted EURS/PDI data described in this thesis.

12.2 SIMPLE PHASE-SHIFTING TECHNIQUES

Three of the simple phase-shifting techniques are presented in this section, followed by a compari
son of theirsensitivities to phase-shifting calibration errdrkis discussion reveals how small refinements
in the analysis can greatly improve the ability of these techniques to overcome some experimental limita
tions, specifically phase-shifting calibration errors. Howgthés discussion also illustrates the inadequa
cy of these methods when faced walge or unpredictable calibration erroffie sections on the complex
phase-shifting techniques address these issues.
12.2.1The Four-StepAlgorithm

Thefour-step algorithm(Greivenkamp and Bruning 1992:510-513) is a good place to begin the
discussion of PSI analysis methods, because among available algorithms it is perhaps easiest to under
stand Assume that four interferograms are collected with a relative phase-gtéplmtween eacfihe

four interferograms may be expressed as
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I,(x) = A(x) + B(x) co (p(x)] = A(x) + B(x) cos[<p(x)]
12(x) = A(X) + Bx)cos ) + 3] = Ax) = B(x)sinf (] -
I3(x) = A(x) + B(x)cod @(x) + 1| = A(x) - B(x) cos[<p(x)]
14(x) = A(x) + B(x) cog ¢(x) + 3—2"] = A(x) + B(x)sin[@(x)]
Extractingg(x) from the set of measurements above is straightforward. One analytic solution is
o) =t 325 or )=t (1= 15,1, -1s) @
Oh—ls0

For clarity the spatial dependence of the interferogrgms implied, but not written explicitly here.
Notice that subtraction within both the numerator and denominator removes the statidd@ime com
ponentA(x), while division eliminates the multiplicative terfgx). In this way @(x) modulo 21, or ¢(x)
moduloTtis obtained.

Often thefringe modulatioror fringe contrasis of interest. Hergy(x) is defined as the ratio of the

amplitude of the modulated intensity to the (temporal-domain) average intensity at a given point

y(x)= % . (5)

It can be shown that in the Fe8tep algorithm, the modulation is

y(x)zzj(u—lz) (1= 13) | ©

I+l +l3+1,

12.2.2The Hariharan Five-StepAlgorithm

When more than three phase-shifted interferograms are collected, there exist multiple ways avalil
able to extracp(x) from the data analyticallyrhe Hariharan algorithmfor five steps (Hariharan 1987) in
particular chooses a solution with reduced sensitivity to phase-shift calibration errors. (Error analysis is
discussed in Section 12.3.he Hariharan method uses five images with a linedative phase-step
between frames. Definfeas a vector of phase-step values.

A= (=20, —a, 0,0, 20), (1)

11 (x) = A(x) + B(x) cod @(x) +A,] = A(x) + B(x)[cos@(x) cos2a +sing(x) sin2a]

1,(x) = A(x) + B(x) cof @(x) + A,] = A(x) + B(x)[cos@(x) cos2al +sing(x) sin2a]

100 = A + B(x)coa) + 8] = Alx) + B(x)cosalx) "
1,(x) = A(x) + B(x) cof @(x) + A,] = A(x) + B(x)[cos@(x) cosal ~ sing(x) sina]

15(x) = A(x) + B(x) cof @(x) + As] = A(x) + B(x)[cos@(x) cos2a —sing(x) sin 2a]

These expressions are combined to form

tengix) = 2sina (1, - 1,)

©)
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The optimum choice af occurs where the method is least sensitive to erraxs Differentiating the
right-hand-side of Eq. (9) with respectaoit is easily shown that the minimum of the derivative occurs
wherea = 102. With this quartercycle phase-step, the phase and modulation expressions are

(p(x)=tan_1D 2('2" ) D or ([(X —tan [2 ),2|3_|5_|l , (10)
| "5‘|1|]

3J4 —1,)7 + (1 + 15 - 215)°

2(|1+|2+2|3+|4+|)

and (11)

With a = 172, the first and last interferograms are nominally the same. Howevaeserve the insensi
tivity to calibration errors, this assumption is not imposed in the analysis. Notice again that subtraction
within the numerator and denominator removes the additive term, while the division eliminates the multi
plicative term.
12.2.3The Least-Squareélgorithm

One pragmatic approach is tleast-squags algorithm(Bruning et al. 1974, Greivenkamp 1984),
in which N = 3 interferograms are combined using arbitr&anown phase-shifté\lthough this method is
not optimized against linear phase-shift calibration errors in the same way that other methods are, by
allowing arbitrary phase-steps it proves to be the most versatile of the phase-shifting analysis algorithms
described herélhis versatility will be utilized by the complex techniques described in Section 12.4.

When the phase-shifts are known by some external means, application of this method is straightfor
ward. ForN measured interferograms, the phase-steps are

A= (D, Dy, ..., D). (13)

Then-th interferogram may be written in the conventional vead then expanded as follows:
1n(x) = A(x) + B(x) cof @(x) + A, | = a9 (x) + ay(x) cosA,, +a,(x)sinA, . (13)

Here, the phase-stepg have been separated from the unknown plpégeusing the definitions

(o (6) =AY
Cay(x) = B(x) cos@(x) . (14)
Baz (x) = -B(x)sin@(x)

These are the three unknowns for which we must solve. Since the phase-steps are knowf, dhd sin
cosA; terms are simply the scalar cfigients of the unknowi,(x) anday(x) in Eq. 13, and are identical
for all pointsx in the measurement domain.

Applying the method of least-squares separately at eachxpaoifi, the goal is to minimize the

error functionE2(x), defined as
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N
2 F2(y )=
E2=E (xi)=Z[|n(xi)—ao( ) —ay(x)cosA, —ay(x)sinA ] (15)
n=1
The error function is related to tfievariance where it is assumed that each measurei@q)tcontains
the same uncertainty

At eachx;, E2(x;) is minimized by diferentiating Eq. (15) with respect to the three unknoagns

a,, anda,. The resultant expression may be written in matrix form

[N 3 cosA, ZsinA, mo( )0 1, (%) -

%cosAn > cos® A, > cosA S'”An[uj"l E: %In cosAn[, (16a)

FEsinA, ScosA,snA, Zsin’A,  HRu(x )5 Bl,(x)sina, F
A(A)a(x)=b(x,A) . (16b)

Here,Z is a shorthand notation representing the sum oveX theasurements, withas the summation
index.The symmetric matribA(A), called thecurvature matrix depends only on the known phase-shifts,
while the vectob(x;, A) contains the measured interferogram dafd) may be calculated just once, yet
the calculation ob(x;, A) must be done separately at every point in the measurement ddimaisolu

tion for the codicient vectora(x;) requires inverting\(A), and pre-multiplying both sides of Eq. (16b).
a(x)=A"(A)b(x,A) (17)

When there are three or more unique phase steps, the rows will be independgw) anitl be invert

ible. Oncea(x;) is known, the phasg(x;)) and modulatiory(x;) are easily found. Over the whole domain,

cp(x):tan‘lg_a?—g)g or ¢x) = tan"Y[~a,(x), & (x)], (18)
and J(x) = VEC)+ 80 (19)

The sensitivity of the least-squares method withphase steps is discussed in Section 8.10.4.

12.3 LINEAR PHASE-SHIFTING CALIBRA TION ERRORS AND THE SIMPLE ALGORITHMS

One important source of measurement errors facing every type of phase-shifting analysis is phase-
step calibration erroré&\ny means used to generate the relative phase-shift is vulnerable to errors in the
step-increments induced by inaccuracies, non-linearities, and random noise in the components. For
instance, a stage that is perfectly repeatable and linear may be mis-calibrated by several percent; a stage
driven over relatively long distances by piezoelectric transducers may exhibit non-linearities; and the

finite precision of translation stages may introduce random errors into the positioning.
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Many of the simple analysis techniques attempt to compensate for and reduce sensitivity to phase-
shifting errors in a number of way#/hen the phase-errors are small, the phase-shift may be modeled
using a poweseries expansion about their intended valtibs. first-order model describes the ideal
phase-shift, plus a linear errdfote that the phasgepor phasencrements simply the discrete deriva
tive of the phase itselfhus, an error that inear in phase is equivalent tocanstantoffset (calibration
error) in the step.

Consider the éécts of a linear phase calibration error on the simple algorithms described in
Section 12.2Here, assume that the experimental phase-incramhéntelated to théargetphase increment

o by a constant tdete.
o =a+eg, (20)

making the phase steps
A=0,0,2d,...,na',...)=00a+¢g2a0+2,...,na+ng...). (22)
“Propagating” the small err@rthrough the FouBtep algorithm witta = 172 yields a phase error

AQ' = (@' — @ — constant) of
FourStep algorithm:  Ag' =1 cos(2¢)e - isin(4¢)e? + O[€®]. (22)

Notice that the phase error is periodic in multipleg ahd has first-order dependenceeoithis com

monly observed behavior is call&thge print-thoughbecause the fringe pattern (or harmonics of it) are
visible in the phasemap. (Section 8.1€ives an experimental example of fringe print-throughcpn

stant phase term withdependence was removed from Eq. (2) because it depends only on a cofistant of
set in the phase-step definition.

Similar analysis conducted on the Hariharan algorithm shows a vésyedif result.
Hariharan algorithm: ~ Ag' = 4sin(2¢)e® +O[e*]. (23)

While again the error is periodic in multiples@fthe dependence on the phase-step ernas now been
reduced to second-orddihis dependence is illustrated in Fig.The collection of one additional interfer
ogram (five instead of four) has improved the uncertainty of the phase recovery significantly

Note on Print-through. The significance of fringe print-through depends on several factors,
including the amplitude and spatial-frequency of the error tepmFrom the two examples presented, it
is clear that the spatial-frequency of the print-through is related to harmonics of the fringe\fgbgad.
high fringe density makes the spatial-frequency of the print-through much higher than the low-spatial-fre
guency of the aberrations of interest, then the print-through errors average to zero over a typical length
scale. In that case the significance of fringe print-through is greatly reduced. Unfortuhégelyeraging

cannot occur for low fringe densities. Hence print-through can be a very serious problem, and great care
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Figure 1.The efect of phase-step calibration
/ errors on the Hariharan method of phase-
retrieval. Designed to reduce sensitivity to cali
bration errors, the Hariharan method shows a
maximum error of approximately 0.01
(waves)for calibration errors below 3(er
step. Not shown in this figure is the periodic
04 . . . - - . . . , dependence of the measurement error on the
-45°-40° -30° -20° -10° 0° 10° 20° 30° 40045 wavefront phase.
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must be taken to eliminate it. Section 8.1@gorts experimental observation and elimination of fringe
print-through with EUVPS/PDI data.

Numerous phase-shifting analysis techniques have been developed to reduce sensitivity to linear
phase-step calibration errors (Creath 1986, Schmit and Creath 1992). Still other methods seek higher
accuracy by modeling non-linear phase-increments (de Groot X98#ysis in the temporal domain pro
vides insight into the behavior and facilitates the development of these advanced methods. By utilizing
more phase-steps, and by finding alternate analytical solutions, the number of possible phase-recovery
techniques is truly limitless.

Aside from the expense in time, collecting increasing numbers of interferograms for analysis is
beneficial in virtually all circumstances. In addition to the potential for compensation ofebts eff
phase-calibration errors, having more data helps reduces sensitivity to noise. KHosgareing phase-
step calibration errors, each additional phase-step introduces one more degree of freedom. In principle, it
requires a polynomial of ordeN 1) to model the behavior df arbitrary phase steps. Givéhinterfer
ograms, and\N unknown phase-steps, we are faced with a systedto8 variables, but onli{ equations
(A, B, andg are the extra three variables).

This is where the simplified models of the phase-step errors becomes nedessanyall phase-
step errors and carefully chosen phase-retrieval algorithms, fringe print-through can be minimized.
However if the phase errors are ¢g@r and unpredictable, then adding more interferograms to the analysis
may not overcome the problem. EWterferometry of the 20Schwarzschild objective, described in this
thesis, was faced with the latter circumstance;fargift approach, capable of utilizing data collected
with irregular phase-increments was requiredovel method, developed by the author to meet these

needs, is presented in Section 12.5.2.

12.4 COMPLEX PHASE-SHIFTING TECHNIQUES
The simple phase-shifting techniques impose a linear or non-linear phase-step model on the data

analysis. Optimization of these methods proceeds from the point of view that the incremental collection of
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more interferograms enables the compensation of more non-linear phase-stiftitsy Hbweveras stat
ed previouslywhen the phase-shift errors areggiaand unpredictable, the inclusion of more phase-steps
may not improve the analysibhis latter, difficult experimental circumstance arose in the BRS/PDI
research, and prompted the author to develop a complex phase-shifting technique that has been implementet
with great success.

Due to the limitations of the translation stages used to position the grating beam-splitter/phase-
shifting element, the phase-shifting steps were neither linear nor predictable. Errags as lau04
cycles, or 16% of the tgetTv2 phase increment, were routinely obsendatalysis using the simple tech
nigues is compromised by the presence of significant fringe-print-through (Section 8.10.4).

A separate approach to interferogram analysis in the presence of high phase-shift uncertainty is to
use the available data to determinehase-stepthemselves prior to or concurrently with the analysis of
the phase at each point. One stated advantage of the phase-shifting algorithms is their individual treatmen
of each point in the measurement dom¥t, while the phase functiagx) is local, the phase-steps
are global and in principle fatct all measurement points equaDetermination of the phase-steps must
be possible.

Formulated, as before, withinterferograms, antl unknownphase step4,

A=(Ag,05,+,4y), (24)

and then-th interferogram is written as
I,(x) = A(x) + B(x) cos[(p(x) +An] . (25)
At each domain point, there is a set\oéquations, witiN + 3 unknownsA, B, @, andA,, . . . ,Ay), making

direct solution impossible. Howevday utilizing all or a subset of the domain points (there are often hun
dreds of thousands), there exist a number of available strategies for deteAnbéetgrminingA is the key
to the complex phase-shifting techniques. Qheknown, application of the least-squares algorithm to
recover the phasgXx) is trivial.
12.4.1Global Least-Squares

One iterative method, described by Han and Kim (1994), seeks to minimize a global error function
with respect to the three unknowns at each point, and itese-shifts. Following the least-squares -algo
rithm of Section 12.2.3, the error function is defined individually for each domain point as

E2=E2(x)= %[h](xi)—ao(xi)—al(xi)cosAn —az(xi)sinAn]2 . (26)

n=1

Now, allowing the phase steps, to be chosen freglyglobal eror function E takes the form
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HereN; is the number of domain points used in this calculation. Because the phadg, stepsar as the
arguments of cosine and sine in Eq. (27), solution will requireralinear least-squasapproach. For

any given set of phase-shifis solution of the other three unknowns follows the linear least-squares algo
rithm described previoushand the global error function is easily calculated. Starting with an igitess

for the values oA (e.g.A,, = n1v2), the individual phase-shifts may be given small increments so as to
minimize E2 globally.

Because\, and@ appear together in thegument of the cosine in Eqg. (25), there is ambiguity in
the definition of azeo refeencephase pointThis indicates that there are infinite degenerate solutions
available. By defining the first phase positiorza®, Ap = 0, and defining all other phase steps with
respect to it, we can exploit this ambiguity and remove one degree of freedom from the calculation.
Solution proceeds as a minimizationgin an (N — 1)-dimensional space.

Global minimization should produce the optimum set of fit paramet#rough the authors of this
method claim successful minimization is easily accomplished, experience with the implementation of this
algorithm using a wide variety of minimization algorithms has shown otherwise. Inherent in Eq. (27) is a
high-degee of intedependencamong the individual phase-shiflg, leading to instability in the solution
algorithm. Changing one of the phase-shift parameters by a small amount requires that each of the others
must also be adjusted to minimize the error function. Perhaps if the initial guess is very close to the mini
mizing solution, then the problem can be made linear in the variatighisSeich considerations are
beyond the scope of this thesis. Otherwise, a superior method must be found.
12.4.2The Fourier-Transform Method of Phase-Shift Determination

With all other experimental conditions held fixed, the relative phase increments generated in phase-
shifting interferometry are easily and accurately discernible in the Falameain in the presence of a
spatial-carrieffrequency This section describes a novel yet very simple method of utilizing the spatial-
frequency-domain information to discover the individual relative phase-increments from a phase-shifting
series of interferogram3he application of this method and a comparison to other phase-shifting methods
of analysis are presented in Section 8.10.2.

Many interferometric techniques, including the PS/PDI, require the introduction of a spatial-carrier
frequencythat is tilt fringes. The PS/PDI acquires tilt as a by-product of the required beam-separation in
the image-plane. In additionll of the single-interferogram analysis methods discussed in Chdpter 1

require the introduction of a significant amount of tilt. For successful analysis, the Foangform
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methods of single interferogram analysis require the presence of a spatialfeagtiency to adequately
separate and isolate one of the information-carrying side-lobes.

As before, the expression for theh interferogram in a series may be written as

In(r) = A(r) + B(r) cog g(r)+An] = A(r) + B(r) cof @) + kT +A, | . (28a)

where Qr)=@p(r)+ ko . (28b)
Here, following the discussion of Sectioh.3, the general expression of the wavefront phase is represent
ed by three separate terms: flitontermA,, contains all constant fskts; alltilt components, including
the spatial-carriefrequency are collected itk ,[0; @y(r) is comprised of all of the higherdered aberra
tions that are of interest to the interferometric measurements. By this definition, the piston and tit compo
nents ofi,(r) are identically zero.

Neglecting for the moment the presence of the discretely sampled domain, the-transierm of

I,(r) will be simplified by expansion of the cosine term:
|n(r) - A(r) + B(r)co&{(po(r) + ko 0 +An] — A(r) +%B(r)ei[%(r)+kom+An] +%B(r)e—i[%(r)+kom+An] . (29)
1,(r) = A(r) + €2 c(r) ke + g7 (r)e ™o (30)
where C(r)=1B(r)e®®. (31)
and * indicates the complex conjugate.
The Fouriettransform of ,(r) isi,(k), given by
F{1,(r)} =ia(k) =a(k) + € c(k —k,) +e™ e (k +K,) . (32)
By the same assumptions made in SectibB tegarding the spatial-frequency contenA@9, B(r) and
o(r), a(k) andc(k) both peak about the zero-frequenéyrthermore, althougik) may contain high-fre
quency and low-frequency components, it is assumed ¢iibéin the vicinity ofk,. The presence of the
spatial-carriefrequency displacesandc* and creates a Hermitian distribution with a zero-frequency
peak and two side-lobes centered aliguand Kk, respectively

At the carrietfrequency
in(ko) = a(k,) +€“nc(0) +e e (2k,) . (33)
in(ko) is dominated by one of the side-lobes, and may be written as
in(ko) = €c(0). (34)

Equation (33) enables us to access the indiviglobbl phase-step4,, to within an arbitrary and unimportant

offset angle.
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A, = tan‘l[in(ko)], or A, = Im{ln[in(ko)]} , (35)

At this point, the individual phase-steps can be calculated and applied to the phase recovery as described
previously The additional additive phase angle determined by the complex coc(§&gamntay be absorbed

into the piston term in the analysis. Calculation of the individual phase-steps requires only that the
Fouriertransform be calculated at one point, the cafreguency

The following two sections introduce a method of catfiequency determination and assess the
quality of the approximation made in Eqgns. (34) and (35) and thet ef the discrete domain.
12.4.2.1Carrier-Frequency Determination

The Fouriettransform method of phase-shift determination requires knowledge of the-tarier
guencyk,. Experimentallythere are several ways of various complexity to deterkyjrfieom the data.

To implement these procedures, no wavefront aberration information is needed, and the entire interfero
gram is not required. If fact, these methods work best when only a sub-domain of the interferogram with
complete fringe-coverage is used.

The most direct carrifrequency determination method finkisapproximately by locating the
side-lobe peak in the spatial-frequency domain. In fact this required step is performed in thetfaosrier
form method of single interferogram analysis (Sectibi31When the side-lobe peak is located within
the discrete Fourigransform (DFT) spectrum, the uncertainty due to the discretization is one-half of the
discretization size — typicallyhis is 0.5 cyclesThis uncertainty can be reduced to any arbitrary size by
increasing the resolution of the discrete spatial-frequency domain in the calculation.

A second two-step method uses the measured wavefront slope to determine thierpreacy
First, the Fourietransform method of single-interferogram analysis is applied to a single interferogram in
the series and a modulat &vavefront phasemap is generated. Heavy spatial-filtering can be used to sim
plify this procedureAfter the phasemap is unwrapped, polynomial fitting procedures can be used-to deter
mine the components tft in thex- andy-directions. Let be the tilt vector defined as

t = (x-ilt, yHilt). (36)

Here, themagnitudeof t is defined as half of the peak-to-valley amplitude of the wavefront phase it
describes. In this cask, is easily found.

ko= 2t (37)

Howeverk, is calculated, there may be some uncertafggume that whilé is thetrue carrier
frequency attempts to calculate, yield the valuek' where

k' =k, +e. (38)
€ is a vector in the spatial-frequency domain of magnitude much lesk jhaine dependence of the
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phase determination @can be seen from Eq. (33), withreplacingk,:

in(k') =in(ko +€) = a(k, +€) +€nc(e) + & Anct (2K, +e) (39)
= elnc(e)
The approximations of Eqns. (34) and (35) are still valid, but withfardift leading constant. Depending
on ¢, the magnitude of(€) may be less that(0). The implications of this are discussed in the following
section.
12.4.2.2Error Estimation
The accuracy of phase-shift determination using the spatial-frequency-domain depends on the rela
tive amplitudes of the functioregk—k ), c*(k+k,), anda(k), neark = k,. The phase of interef, is
found in the coditient of c(k—k,) in Eq. (33) and is given approximately by Eq. (33)e error in this
approximation cannot be determined win{k) anda(k) are unknown. Howevegby examining the data
in a phase-shifting series an estimate of the error magnitude is easily made.
For an individual phase-step, the three quantifflesk), c*(k+ky), anda(k) plus theA,-depen
dent complex coétients found in Eq. (33) may be regarded as complex scalars, or vectors in the com
plex plane Assuming that all other experimental conditions are held fixed while the phase-shifting is
implemented, only the unit-magnitude di@énts ofc(k—k,) andc*(k+k,) are afected.To separate the
one term of interest from the other two, define two complex congtantdq.
p=e’nc(0)
g=alke)+e et (2,) (40a, b, c)
in(ko) =p+(q
p represents the phase of the side-lobe pgakthe magnitude of the additional components. In most
experimental situations of interest, it is safe to assumepthatg and that the phases pfandq are
independent.
Figure 2 shows a representatiorpdbr six 6C0-phase-steps in the complex plane. Only the resul
tant vectors are measurabldie lagest phase error (betweprand the measured valuei@i,)) occurs
whenq is perpendicular tp. Whenq is significantly smaller thap, the maximum magnitude of the error

in the measured phadd,, is approximately
8An=|pl/ldl - (41)

Since thedA,, depends on the ratio {gff to |p|, minimization of the error can occur in two waj.is
increased by ensuring that the calculated cafmdguency occurs at the peak value of the spatial-frequen

cy domain side-lobe(k—k,). |g| depends on the mid-spatial-frequency contert@) anda(k), and can
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only be minimized by guaranteeing that the spatial-carrie
frequency in use is of didient magnitude for this to be
true. Improvements in fringe contrast reduce the relative
magnitude of(k) and improve the ratio.

Although the magnitude afis unknown, it may be
estimated from the dat&he variation in the measured mag
nitude ofi,(ko) is related to the magnitude @fThis varia
tion is represented by the gray ring in FigTBe outer and
inner radii of the ring are determined by fifp« g} and
min{ |p — ql}, respectivelyi (ko) is maximum whem andq
have the same phase, and minimum whandq are 180
out of phaseThe limitation of this estimation is that for a
small sampling of phase-shift steps, there is no guarantee
the maximum and minimum valuesigfk,) will be

achieved.

|q|2%[max{|in(ko)|} —min{|in(k0)|}] . (42)

Combining Egns. (41) and (42), based on the measured data

the estimated uncertainty in any given phase-step is

_ [maxfin(o)]} - minfin(0)}] |

Phase-Shifting Interfemetry

— 1 eng(0)
p:alke)+e e (2k,)

—— in(ko) resultant

Figure 2.A complex-plane representation
of the side-lobe pegs for six phase-shit
ing steps of 60 The measured phase at the
carrier frequency(k,) is dominated by,

but is afected by the non-zero magnitude
of the other spatial-frequency-domain com
ponentsy. g causes errors in the phase-
determinationThe gray ring shows that the
maximum and minimum measured values
of i(k,) can be used to estimaie

(43)

20,2 galmeiteo} -l
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Phase Unwrapping

13.1 INTRODUCTION

Due to the periodic nature of interference fringes, and the absence of an absolute reference point in
phase, nearly all modern interferogram analysis phase-recovery methods are only capable of determining
the wavefront phase to within an arbitrary multiple af(@ccasionallyonly to within a multiple ofT).

This limitation does not, howeveestrict measurement to optical patHeaté&nces (OPDs) of less than
half of a wavelength: usuallyhere is sdicient information to reconstruct the original continuous wave
front from the available discontinuous data.

This chapter describes several approaches for solving this important inverse problem, and presents
two novel methods. One method is designed to overcome floailtidés presented by numerous, isolated
regions containing no valid data.second, very general and robust method is capable of operating in low
signal-to-noise applications and, where valid data exists, in isolated, discontiguous regions.
13.1.1Unwrapping Overview

For reasons addressed in Chapter 12, many phase-retrieval methods combine several separate inte
ference patterns and utilize a relation based on an arctangent to recover the wavefront phase. ©ther meth
ods, based on Fouridomain analysis, also utilize an arctangent.

In general, the calculated phagé) may be written as a functional, combiniNgeparately mea

sured interferogramd{, . . .,In}:

(p'(r):tan'l{F[Il(r),Iz(r),-n,IN(r)]} : 1)
Each point inp'(r) is related to the actual wavefrap(t) by an arbitrary number ofr@steps.@'(r) is

called amodulo 2rphasemagnd is related to the actual wavefront phag¢he relation
@(r) =9(r) mod 2m. 2)
Here the modulus function is defined as the remainder after tfesstanteger multiple ofi2less than or
equal tog(r) has been subtracted. Figure 1 illustrates this point in one dimension, showing both the origi
nal wavefront and the modulat2neasured wavefront.

Equation (2) forms the basis of one of the most important and often extrenfielyltdifiverse

problems in modern interferogram analysis: the modulpt#tasemap must be used to reconstruct the

(6m 3 o wrappediaw data o -0=>"°=°  Fjgure 1. Although the test wave

1| - - - @ unwrapped /O,O front is continuous (dz_;lshed line), the

(4 2 fed raw phase data from interferogram
o analysis is typically modulor® or

s moduloA. The goal ofphase unwrap

pingis to reconstruct the original con

tinuous wavefront from the raw data.

(2m 1

Phase (rad) [wavei]

0

Position
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a) (8m4-o0—o

0. wrapped(raw data) | o 5 0 ° Figure 2. Reconstruction of the test
_ 11 ---- (p':(p +m, unwrapped o wavefront from the wrapped raw data
(6 3400 O = o 5= requires that each point be incremented

by an integral number of wavelengthst(2
radians), to achieve a surface free of dis
continuities. (a) Based on the raw data
(black circles) the hollow circles repre
sent the available choices for each point
in the reconstruction. (Bhe calculated
increments are stored in the array

Position

m (radians) [waves)]

T T
Position

actual wavefront, such thefr) is the surface of least curvature, with itsdiscontinuities removed by
the reconstruction.

While an obvious approach may simply require the additiomait@os wherever a discontinuity is
detected, the problem becomes complicated in the presence of noise, or where the data exists in disjoint
regions Another source of diculty arises when the spatial-frequency of the fringes approaches the
Nyquist limit (Nyquist 1928), and the local wavefront slope exceeds individual stepsoatinuously
Such extreme cases, not discussed here, may regpiteri information and utilize the so-called Sub-
Nyquist Interferometry (SNI) methods developed by Grievenkamp (1987).

In each method presented here, the goal is to determine empirically the fun(cdidinat solves

o(r)=@(r)+m(r), wherem(r) = 2m(r), nOlntegers. (3)
Fig. 2 shows the role afi(r).
13.1.2Notation
A change of units simplifies our notation considerablsingwavelengthunits rather thamadians

to describe the wavefront phap@) and@'(r) enablesn(r) to take integer values. For this notation, Eqns.

(2) and (3) must be re-written as
@(r)=qr) mod1, 4

and ®r) = @(r)+m(r), m(r) Olntegers. )
The modulo 1 function retains only the fractional parpj, between 0 and Includingzero. Here'(r)

is referred to as theaoduloA phasemap
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13.2 SIMPLE UNWRAP METHODS

Under favorable circumstances, procedures for unwrappodulo 2t phasemapgor moduloA
phasemapsin wavelength units) are often very straightforward, iterative techniques. Complicated versa
tile and robust algorithms are often built on the careful application of the simple techiiigjsesection
presents several general unwrapping methods of increasing complexity and usefulness. First, a ene-dimen
sional treatment is presented and then is expanded to two dimensions. Next, the problem is generalized to
withstand the presence of noise and to include arbitrary “continuous” aperture 3tnapgsecific conti
nuity requirements are carefully described for each method.

As discussed in Section 13.1.1, the goal of phase unwrapping is to find the fun(c)iowhich is
used to reconstruct the smooth phaseg{apfrom the (potentially) discontinuous modw@hasemap
@'(r). From the previous section, the function is defined in the following iwayavelength units:

@(r) =@ (r)+m(r), m(r) Ointegers. (6)

One assumption of the following discussions is that we hagepniori knowledge of the uncertainty of any
individual data point relative to the others. Some phase-unwrapping methods utilize varied data-validation
techniques (Huntle§989, Quiroga and Bernabeu 1994, Stephenson 1994, Charette and Hunter 1996) to
eliminate spurious points or regions from further calculations. Here the assumption will badthaints
coexists with the rest of the data.
13.2.10ne-Dimensional Unwrapping

In principle, the discontinuities ip'(x) are limited to a finite number of points. Excluding these
points,@'(X) and@(x) are related by a (piecewise continuous) constdsetofand thus have the same deriv
ative. Numericallythe discontinuities ip'(x) are easily detected by examining the behavior of the discrete
derivative of@'(x), defined as

do _ 9(x+1)-¢(x)

= - = 7
o 1 @ (x+1)-@(x), wherex=0, 1, 2, (1)

For the purposes of this discussion, the tdamvativerefers to this discrete approximation. Discortinu

ities are present wherever the magnitude of the derivative exceeds a given threshold.

g
o

Figure 3. Modulo A raw phase
S e ==~ data@' and the discrete derivative

Phase [A]
o =
o o

doe'/dx as defined in Eq. (7) are
\/\ shown to illustrate the use of the
—_— e —_— ———>> derivative in locating the phase
/\ discontinuities.Where the magni
« 0.5 / \ tude of the derivative exceeds a

threshold value (e.g. 0.5 waves), a

discontinuity is detectedhe sign
-0.5 AN :
V of the derivative is also used in
— 1 the reconstruction.

Position

214



Phase Unwrapping

Figure 3 shows the behavior @), ¢'(x), anddg'/dx, wheredg'/dx is defined on the discrete
domain, withx as the index of the pointvhere the magnitude of the derivative exceeds 0.5 (waves), a
discontinuity is present.he sign of the derivative reveals whether the step is up or down.

To construcim(x) from @'(x) andd@’/dx, one may scan across the domailNgfoints and increment

m(x) according to the following procedure.

Procedure 1: Basic One-Dimensional Unwrap
1. Loopifrom 1to N-1)

2. A= + 1) — @'(i) (horizontal discete derivativi
3. IF |A]>0.5THEN
4. mi+1 toN) - mi+21 toN)-— sign@,) (shift all points fom i+ 1to end of ow)
The sign function is defined as
0-1, x<0
sign(x) = Ho, x=0 . 8

BH, x>0

The arrow operation £” indicates:replace the quantity on the left with the quantity on the ridftis
operation is straightforward to perform on a compltarStep 4, all of the points im(x) thatfollow a
discontinuity are décted.The use of the sign function, defined in Eq. (8), implements an increasing
decreasingstep where appropriate.

Thethreshold valuen the magnitude of the derivative (here defined as 0.5 in Step 3) determines
the maximum allowable wavefront slope for proper reconstruction slope greater than this value is
identified as a discontinuity where the phase is wrapped.

Application Note. In experimental applications, one fact about this unwrap method is abundantly
clear: Procedure 1 is very vulnerable to bad datingle “error” can create an erroneoutsef in all of
the subsequent data. It is possible to incorporate several neighboring points into the derivative calculation
in order to overcome thefetts of a single spurious data point. In such cases, care must be taken to prop
erly handle discontinuities when they occur at the edges of a domain. Methods of this sort can also be
effective where the wavefront slope isgar

Another approach is to pre-filter the data before unwrapping, either in one- or two-dimensions.
Simplesmoothingor averagingdfilters should be avoided because they improperly smooth the necessarily
sharp 2t phase-discontinuities and may reduce their magnitude below the threshold required for detection.
Furthermore, smoothing causes a loss of high-frequency information that may be of interest. In the pres
ence of an isolated bad pointsmoothindilter will decrease the magnitude of thefdience by distribut
ing the magnitude among a neighborhood of adjacent points.

Some authors have recommended the median filter (Freiden 1981, Crennell 1993) as one capable
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of reducing isolatetbad pointswhile preserving the sharpness of the phase discontinuities. Since-a medi
an filter samples a small neighborhood of points and replaces the value at the center with the median
value of the group, it can bring an isolated bad point into agreement with its neighbors witdatingaf
adjacent pointsThis is a very important advantage of the median filter
13.2.2Two-Dimensional Unwrapping

Two-dimensional unwrapping is required for most interferogram wavefront analysis. It may-be con
sidered as the direct extension of one-dimensional unwrapping tamaleslumns of data. First, the
direction derivative is used to implement the horizontal row unwrapping of Procedure 1. In the absence of
noise, this ensures the continuityqih the x-direction only A second step then utilizes thalirection
derivative to increment entire rows. During the procedure, it may occur that the magnitudes of some dis
continuities become lger than 1.5. In these cases, the required increments (or decreshemt®come
greater than JAny row-incrementing routine must address this issue either by using multiple unwrapping
“passes” through the data or by sensing the magnitude of each required increment.

Note that for the purpose of phase unwrapping on a two-dimensional data getirdwtion is
chosen arbitrarilyClearly when the orientation of the unwrapping procedure is rotated hyt@#0Oresul
tant phasemap must be the same to within a constant multipléSeparately unwrapping in two orienta
tions can be used as a method of data validadi@memparison can be used to quickly identify problemat
ic regions.

The most basic procedure for two-dimensional unwrapping is outlined.l&doavsimplified nota
tion, an asterisk used as an index represents an entire row or column of the domain. For ¢'&tahce,

is the entire second rownd@’'(3,*) is the third column.

Procedure 2: BasicTwo-Dimensional Unwrap

1. Loopj from 1 toN

2. ImplementProcedure 1: on each rapi(*, j) (1-D unwrap
3. Choose a single columr3= X,, to use as guidefor vertical unwrapping

4. Loopjfrom 2 toN

5 Ay = 0%, J) — (X, i — 1) (vettical derivative
6. IF [a,| > 0.5THEN
7 me*, j) — m(*, j) - signgy) * floor (a,[) (shift row)

The function floorX) is defined as the greatest integer less than or equal to

The most significant limitation of Procedure 2 is that just one column is arbitrarily chosen as a
guide for the vertical unwrappings with the one-dimensional unwrapping of Procedure 1, a single bad
data point in this particular columnfedts the subsequent unwrapping of all of the rows.

Experience has shown that simple methods of filtering the derivative can substantially improve
unwrapping results in the presence of noise. If the row increment is based insteadwandbe veical
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derivativeacross the width of the arraynen many more points are considered, reducing feetgbf a
single bad data point. Howeyétris quite possible for one or several points very far in magnitude from
the neighboring values to strongly influence the average derivative.

A superior filter is the mediaiVhen themedian vetical derivativeis used, a lgje number obad
data points, or several points that are far from their neighboring values, wilfexittag calculated
derivative. In this waythe efects of bad data points do not propagate as easily into other rows.

A method for incorporating the median in the vertical unwrap is given in Procedure 3.

Procedure 3: Two-Dimensional Unwrap with a Median Filter
1. Loopj from 1 toN

2. ImplementProcedure 1: on each rapi(*, j) (2-D unwrap

3. Loopj from 2 toN

4, Ay = medianfp'(*, j) —@'(*, j — 1)} (median diffeencg
5 IF [a,| > 0.5THEN

6 m(*, j) — m(*, j) - sign@,) * floor(|a,]) (shift row)

13.2.3Unwrapping on Sub-Domains

Interferogram fringe patterns are often collected on a sub-region of a detectoCansgquently
the relevant regions containing phase information are sub-regions géadarilable domaim broad
class of versatile phase unwrapping algorithms accommodates the arbitrary positions and shapes of these
domains, and avoids the inclusion of points from outside of the valid sub-region.

In this section two methods are presented for addressing sub-domain unwrappifigst method
places strict requirements on the shape of the sub-region and is therefore limited in its applidability
second, more general method extends the capabilities of the first to a wider variety of sub-region shapes.

For the purposes of this discussion, the selection of the sub-domain of interest must be done prior
to the unwrapping calculatiomhis may be done in a number of ways: manual methods, involving user
interactive procedures, or automatic methods, in which an investigation of signal-to-noise or some other
relevant property helps to identify the sub-regions of valid datanentioned previouslsome calcula
tion-intensive methods are capable of validating datang the analysis. It is not be necessary to address
those methods here.

We can describe sub-regions of interest with the definition of a special binary fur(c)i@tross
the full domain of measuremeia(r) is used throughout this discussion.

1, Or Osub-region

o) = B) Or Osub-region ©

Sub-Domain Unwrapping: Method 1

This method places two requirements on the shape of the sub-region.
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Figure 4. This figure illustrates the requirements on the sub-domain unwrapping imposed by Procedure 4 of Method 1.
White squares belong to the sub-domain of interest. Row 6 isfdescontinuous. Likewise, rows 4 and 5 are discon
tinuous in (b)All of the rows of (c)re continuous, yet vertical connectedness is violated by rows 5 and 6, which share
no common columns. (dgtisfies both of the requirements and is a valid sub-domain for unwrapping by Method 1.

7 7

1.Row Continuity: The horizontal path between any two points in the same row within
the sub-domain must not include any points outside the dofrtzénis, the horizontal
rows of the sub-region must not be discontinuous.

2.Vertical ConnectednessAny two adjacent rows within the sub-domain must contain
at least one column in common.

Figure 4 illustrates these requirements.
Procedure 4 is a modification of the median-filtered two-dimensional unwrapping Procedure 3,
refined to include only points within the sub-domain definea(boy.

Procedure 4: Two-Dimensional Median-filtered Unwrap on a Sub-Domain
1. Loopj from 1 toN

2. ImplementProcedure 1, on each rapi(*, j) (1-D unwrap

3. Loopj from 2 toN

4 i* = {i| o(i,j)=1 AND ofi,j—1) =1} (vettical connectedne}s

5. IFi* #0 THEN (note: 0 denotes thempty set)
6 Ay = medianfp'(i*, j) — @'(i*,j — 1)} (median diffeenceg

7 IF |a,] > 0.5THEN

8 m(*, j) < m(*, j) - signgy) * floor(|a,[) ~ (shift row)

The symboll denotes thempty set
It is not necessaryo restrict the row-unwrapping of Step 2 to include only points within the sub-
region, points outside of the sub-region will be ignored by the ugerofStep 6. Between every pair of
adjacent rows, the median féifenced, calculated in Step 6 is based only on those pairs of points that
share a columrirhis is illustrated in Fig. 5The arrows indicate which pair of rows is being compared. In
the figure, the elements that would be used in the calculatidpare marked with an “X”. Note that if a
row contains no valid points of the sub-region, no calculation is performed. By the two requirements
above, it is clear that this only occurs at the bottom row and at the first empty row above the sub-region.
By invoking median filtering in Step 6, Procedure 4 is more resistant to noise than Procedure 3.

Figure 5.In Procedure 4, Step 6, the median dif
a) b) ference between two rows (a vertical derivatige)

1 XIX]X ::| 1 calculated using only points from columns com
X|X[X 2 X
3 3 X

N

mon to both rows. Here the arrows indicate which
two rows are being compared, and the “X” sym
bols mark the specific points that are used.

el B
>
>
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0(x): a discontinuous row

AR L

10— @ (X) without discontinuitiesse— @ (X) with discontinuities,-O- segments whdggdy > 1/2
05 /’W,ﬁ
0.0 m f

3.0

sub-region
definition

"wrapped"
moduloA

unwrapped phasemapsphasemaps

—— proper unwrap
-| —e—unwrap with errors due tiscontinuities

I

iy T ...... /

N
Figure 6. Row unwrapping in the presence of discontinuities can lead to unwrapping €h@idomain is defined
by the binary functiom(x), shown in the top plot(x) = 1 for points within the domaiffhe middle plot shows a
moduloA raw phasemap (dots), set to zero within the discontinuiffles.solid grey line shows what the raw
phasemap would be if the obstructions were remadWed.hollow circles indicate the places where magnitude of the
derivative exceeds 0.5, triggering a phase increment in the unwrapping algdtigaimottom plot compares the

unsuccessfully unwrapped phasemap (dots) thizghideal case (grey line). Here, errors are caused by phase-wrapping
occurring within the obstructiomndby the obstruction itself.

However the application of Procedure 4 is limited to special kinds of sub-regions. For example, i is inca
pable of properly unwrapping in the presence of row discontinuities; Fig. 6 illustrateSheing are two

kinds of errors that can be introduced when this procedure is followed in the presence of discontinuities.
One type of error arises when a phase-wrap oaeiting a discontinuityThe second type causes a phase-
step to be assigned (correctly or erroneouségause othe discontinuitywherever the magnitude of the
derivative exceeds 0.5 (waves); these points are indicated in the figure by hollow circles.

It is possible to improve Procedure 4 to identify and correctly account for horizontal diseontinu
ities. Therefore, sub-regions containing “holes” can be properly unwrappé&dmethod is outlined in
Procedure 5.

The less-restrictive sub-region requirements for Procedure 5 are as follows.

1.Row Continuity is required only of théirst row. The horizontal path between any two
points in first row of the sub-domain must not include any points outside of the sub-
domain.That is, the first row of the sub-region must be continuous.

2.Vertical ConnectednessAny two adjacent rows within the sub-domain must contain at
least one column in common. Furthiér rowis discontinuous, then each separate-con
tinuous part of the row must be vertically connected tgtheiousrow by at least one
point within the sub-domain.

These two requirements are illustrated in Figure 7.
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T

7 ] 11

Figure 7. Thesethree figures illustrate the requirements imposed on the sub-domain shape by Procedure 5. Row 1 of
(a)is discontinuous and so violates the first requiremenfTtib)segment on the left side of row 5 is not vertically
connected with the rows above it. B)th requirements are satisfiékhis illustrates how this method can successful

ly address surrounded obstructions in the centers of sub-domains.

Procedure 5 Two-dimensional Median-filtered Unwrap on a General Sub-Domain
1. Loopj from 1 toN
2. ImplementProcedure 1, on each rapi(*, j) (2-D unwrap

3. Loopj from 2 toN

4 ¢ = number of separate, continuous regions in @i j)

5 Loopk from 1 toc

6. i ={i | i O thekth continuous region of(*, j) = 1}

7 it = {i | O(iy, j) =1 AND ofiy, j — 1) = 1} (vettical connectedne}s
8 If it # 0 then

9. A= medianfp'(if, j) — @'(it, j — 1)} (median diffeence

10. IF |a,| > 0.5THEN

11. M, ) — My, j) — sign@) * floor (|ak]) (shift row)

There are a number of simple ways to count the separate continuous regions of a given row and
identify their endpoints, as required by Steps 4 and 6. Besides scanning the individual pixels, the discrete
derivative of the sub-region-defining functio(x, y) can be used. Recalling that 1 for points within
the sub-region and = 0 for points outside of the sub-region,

O 1, at the point before the start of a new continuous region
=o(x+1y)-o(x,y) = 1, at the last point of a continuous region . (10)
E 0, at any other point

do(x, y)
dx

Since this derivative is undefined at the edges of the domain, edge points must be considered.separately
This problem is easily averted by padding the rows with a leading and a trailing zero.

Step 6 identifies the x-indices of points within the ®&éparate, continuous regions, one region at
a time. It should be noted that these regions may be as small as one column wide. Step 7 then determines
which of these points can be used in the calculation of the mediaredife Dyk. If |Dyk| exceeds 0.5
(waves), then all of the points within the particular continuous sub-region of the row are incremented by

the appropriate integer to make the mediafedéhce less than 0.5 in wavelength units.

13.3UNWRAPPING ISOLATED BAD REGIONS: PHASEMAP CLEANING
The unwrapping procedures presented in the previous sections have various amounts of resistance

to noise in the raw phase data. By using filtered comparisons of adjacent rows, the more sophisticated
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procedures attempt to stem the vertical propagation of errors. Howevattempt is made to limit heri
zontal error propagation within the rowss a result, an imperfectly unwrapped phasemap may contain
isolated points, horizontal lines, or whole regions of data thathéftedby an integral number of wave
lengths away from a position that would provide the best agreement with adjacent data.

This very succinct procedure introduces a method that has been successfullyclesuutovrap

ping errors.

Procedure 6: Phasemap Cleaning

1. Break the interferogram intd rectangular tiles: name the individual tile domdhs
2. Loopnfrom 1 toN

3. m, = medianfpD,,)] (tile mediar)

4 A(Dy) = roundip(D)) — my] (point-by-point comparisgn

5. d = roundfn, — m,_9) (adjacent tile comparisgn

6. o'(Dy) = 9(D,y) —AD,,) —d (tile cleaning

First the interferogram is broken into individual til@sen each point in the domain is compared to the
tile median with the round) function. By definition, round{ returns the closest integerxoThe two-
dimensional arra}\(D,,) is non-zero at any point that f@ifs from the median by more than 0.5 waves.
Similarly, this tile is compared to an adjacentviously examinetile (represented symbolically by the
n-1 index), again using the roumjifunction to calculate the scaldrFinally, a new phase functiap' is
calculated for the tile.

One significant aspect of this procedure is the use of the pduad¢tion rather than a comparative
IF --- THEN statement to identify the points that are more than 0.5 waves from the median. Rounding,
which speeds-up and simplifies the procedure, is used again in Section 13.4 for Guided Unwrapping.

Refinements There are several refinements of the basic method that can improve the results signifi
cantly In the presence of high wavefront slopetjloy points at the edges of the tile mayfetfifsubstantially
from the mediawalue. For this case, two possible solutions are as follows. First, choose a small tile size,
or choose the length amddth of the tile based on the mean wavefront slope ix ey directions
respectively — small tile for high slop&nother approach is to calculate and subtract the mean tilt within
each tile, then calculate the median, repaibt@points, and, finallyreplace the tilt that has been
removed.This method makes the use ofger tile sizes possible.

Selecting the optimum tile size is a veryfidifilt matter Isolated points and lines are the easiest
problems to repaiHowevey when a whole region is collectively shifted, a small tile may become
engulfed. For example, the tile may fall completely within the shifted region, and the program may not
recognize its displacement from the adjacent phase vdlherefore, the optimum tile size must not be
smaller than any shifted regio. the same time, if the wavefront curvature igérthe tile must not

exceed the length-scale of wavefront variations under investigation. Otherwise, the curvature may impair
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the proper calculation of the medidhe comparison of the median values of adjacent tiles is intended to
reduce the limitations of using small tiles. Iflaanedtile is compared to the previously-cleaned adjacent
tile, then the cleaning process becomes analogous to the simple unwrapping process, performed on the
tiles rather than on the individual pixels (i.e. the tiles beceuperpixels.

Another improvement on these methods is to be aware of which pdihis a tile belong to the
measurement domain and which points do not. Rectangular tiles will overlap irregular domain boundaries.
The exclusion of points that fall outside of the domain may yield a median value more characteristic of
the data within a tile.

A last approach is to perform the cleaning multiple times, usiferelitt tile sizes. Doing so, hew
ever runs the risk ointroducingunwrapping errors into a clean phaseniapreduce the likelihood of this
problem, two cleaning procedures can be perforimgxrallel and then compared for inconsistencies.

Special Note At this point, the “cookbook” nature of these unwrapping “recipes” is certairly evi
dent. Procedures and variations of procedures fill the literature, and there appears to be little agreement or
which is the most reliable, most computationalfjcegnt, and fastest method to use in arbitrary circum
stancesThe following sections on Guided Unwrapping seek to overcome these limitations by using an

entirely diferent approach that has proved the most successful inilteiferometry applications.

13.4 GUIDED UNWRAPPING

Unwrapping noisy data is perhaps the single most daunting task facing many interferogram analysis
applications, and it was certainly a significant problem for the Hitdfferometry experiments as
described in this thesi$he unwrapping procedures presented in the previous sections utilize adaptable
filtering methods to overcome some of the limitinfeefs of noiseThese methods inevitably fall short of
the mark and leave the unwrapped phasemaps with errors introduced by noiytelaats to clean the
unwrapped phasemaps improve the situation, but are not always reliable.

A completely diferent approach is the useapriori wavefront information during the unwrap
ping procedure. Obviouslif the final result is already known, the unwrapping is trivial. Howewben
the wavefront is known onlgpproximately then the information contained in the approximate wavefront
can be used tguidethe unwrapping procedure with great success. In the guided unwrap, all of the high-
frequency information in the raw data is preserved. Perhaps the most significant advantage of the guided
unwrap is its ability to unwrap in the presence of obstructed regions and regions containing no valid data.
Discontiguous sub-regions, for example, can be unwrapped without any special considerations. Unlike the
previous unwrapping methods, guided unwrapping is equally applicable to any one- or two-dimensional

domain because thereris relianceon neighboring data.
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The concept of guided unwrapping is used in Sub-Nyquist Interferometry (Greivenkamp 1987)
designed for cases in which the wavefront slope exceeds 0.5 waves per step (Nyquist limit), where con
ventional unwrapping methods fail. Here, a similar idea is exploited to overcome noise. Hoprithé
information is obtained is not important here. (Section 13.5 discusses a novel approach to ascertain the
approximate wavefront required for guided unwrapping.)

The most simple guided unwrapping procedures are described in Procedures 1a and.1b below
Suppose that tha priori wavefront information is contained in the functiofr) over the measurement
domain. Using the raw phase dagfa), the most simple guided unwrapping procedure utilizes the func
tion roundg) in a way that is similar to the phasemap cleaning procedures in Section 13.3 of this chapter

Procedure 1a: Guided Unwrapping
1.m(r) = round I (r) — @(r)] (difference punded to neast integey
2.0'(r) = @(r) + m(r) (adjust raw phasemap into aggment with the guigle

More succinctlythis procedure may be written in one single step.

Procedure 1b: One-Step Guided Unwrapping
1.¢'(r) = @(r) + roundr (r) — (r)]

As in the unwrapping techniques presented in the previous sections, integer (wavelength) steps are
added or subtracted from the raw data to produce the unwrapped phaseiejore, the functiom(r)

(Procedure la only) contains the required integer phase steps in wavelength units. Notice, tiav@ver

a) Properly guided unwrapping b) Guided unwrapping errors caused
by an offset error

o raw data (moduld)
— unwrappingguide I'(X)
3N\ — r(x) modA 3\
< guided unwrap
_|| # abad data point |
o 2\ o 2\
(%] o 0
] / ]
= 7, =
o - o
_ 9 _
P
A / o, A o.‘
— ’,/ ) 1 .o.
“‘ o offset{ . oo®
0 — 0 - —
Position Position

Figure 8. Guided unwrapping works successfully when the guide is approximately separated from the raw data by an
integral number of wavelengths, as shown in\(é)en there is a fractionalfeét, howeverthe proper increment for

the raw data becomes ambiguous. In (b) tigebis approximately 0.5 waves. Small variations in the raw data cause
the increment to fluctuate by one wave for adjacent pdiihis. kind of guided unwrapping error is addressed by
Procedures 2a and 2b.
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contrast to the previous methods these proceduresgaitentiorto the locations of the discrete phase-
wrapped steps present in the raw data. In fact it is not even necessafgrémiiiite between points that

are inside or outside of the measurement domain: points outside of the domain are not included in subse
guent analysis.

At this point, Procedures 1a and 1b contain one subtle oversight that can lead to unwrapping errors.
Figure 8 illustrates two examples of the guided unwrapping procedures given in Procedures 1a and 1b
above. Under ideal circumstances, shown in Fig. 8(a), the rawpia brought into the best possible
agreement with the unwrapping guidg). Figure 8(b), howeveillustrates a serious problem that occurs
when there is a fractionaffsetbetween the raw data and the unwrap guide. In this case, there can be
ambiguity in the unwrapping. Usuallyndividual data points are incremented to bring them as close to the
guide as possible; but when théset is close to 0.5 waves, small variations in the raw data can induce
differences of one wave in the guided unwrap.

Procedures 2a and 2b, beJawercome the édet problemThe solution presented here is to eom
pute the dket before the guided unwrap is performed. In the presence of noisy data this calculation
requires some filtering, and the median filter again proves very useful. Here, it is very important to restrict
r to points within the measurement domBinthis ensures that the medianfeliénce is a meaningful

value (not based on invalid data from outside of the domain).

Procedure 2a: Guided Unwrapping with Ofset Removal, Method 1
1.4 = mediad [(D) — ¢(D)] — round (D) —@(D)]} (calculate offsét
2.m(r) = round I (r) —@(r) —A4] (difference punded to neast integey
3.9'(r) = @) + m(r) (adjust into ageement with guide
An equivalent yet slightly more succinct implementation of Step 1 above usesdi@operation
to performthe rounding and subtraction in one sfElpere is, howeveine minor catch: the modulo oper
ation becomes non-periodicyat 0.Any problem this aspect of the modulo operation may cause may be

avoided by ensuring that the fdifence betweeh and@is positive-definite: a lgre numbet. may be

added td” during the modulo operation.

Procedure 2b: Guided Unwrapping with Offset Removal, Method 2
1.L = anyinteger greater than — nfifi(D) —@D)}  (e.g. choose 10,000)

2.A = mediad [L + (D) — ¢(D)] mod 3 (calculate offset
3.m(r) = round[ (r) —q@(r) —A] (difference ounded to neast integer
4.¢'(r) = @) + m(r) (adjust into ageement with guide

Both Procedures 2a and 2b may be simplified slightly by the combination of the last two steps into

one single step, as was done in Procedure 1b.
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13.5 FOURIER-TRANSFORM GUIDED UNWRAP

The guided unwrapping technique presented in Section 13.4 combines the desirable attributes of
simplicity, speed, and high-reliabilitf he dificulty lies in obtaining the priori approximation to the
unwrapped wavefront being measur€bis section presents a novel method of synthesizing the best
attributes of two existing methods to produce a new unwrapping procedure calfenittee-Transform
Guided Unwrap

In essence, the powerful spatial-filtering capability of the Fotrégrsform technique is used to
generate aa priori wavefront phasemap containing only low-spatial-frequency informatibren used
as an unwrapping guide for raw phase data generated by another means (e.g. phase-shifting), otherwise
difficult unwrapping procedures are greatly simplified. Depending on the degree of spatial-filtering used
in the Fouriettransform procedure, the presence of obstructions and blemishes can be easily overcome.
An outline of the main procedure and a note on its application are presented here.

Begin with a raw phasemagfr) and one recorded interferogra() (which may be from of a
series of interferograms).

Procedure 1: Fourier-Transform Guided Unwrap
1.Apply the Fourieitransform method (Sectiorl B) with heavy filteringto the interferograni(r).
This produces a wrapped phasengg(p).

2.Unwrap(pv(r) to produce the wavefront guidiér).
3.Apply guided unwrapping (Procedure 2b) to the raw @atausingl (r) as the guide.

Application Notes. Choosing the proper amount of spatial-filtering depends on three main attribut
es: the characteristics of the obscured regions, the amplitude and spatial-frequency of the noise present in
the interferogram, and the curvature of the wavefront undemtithtenough spatial filtering, isolated
blemishes nearly vanish; even obstructions that cut the measurement domain into multiple disjoint sub-
domainscan be overcome, because the underlying phase can be made continuous across the blemishes an
obscurationsWhen heavy filtering is applied, noise and other discontinuities are removed and unwrapping
the guided wavefront becomes very sim@ae cause for concern in the application of this method is the
presence of highly-curved sections of the wavefront under test. Even in optical systems of high-quality
regions of high curvature may be present at the borders of the measurement domain as a rizaattaf. dif
High-spatial-frequency components of small amplitude and low-spatial-frequency componenmgs of lar
amplitude ardothattenuated by heavy filteringhe result may be a wavefront guide that fails to approx
imate the wavefront under test in some regidie only straightforward solution in these cases is to
relax the filtering until the problem is alleviated. It may octuwevey that the relaxation required to

include allof the highly-curved wavefront componentsdoeshe advantages that this method provides.
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The problem of high wavefront curvature was identified in the discussion of single interferogram
analysis(Chapter 1). High curvature violates theonotonic phaseeguitementdescribed in Section 1.1.1
for single interferogram analysis and makes the application of filtering problematic. Hence the Fourier
Transform Guided Unwrapping Method is best suited to those cases for which the-transferm meth
ods of phase-retrieval are able to provide a low-spatial-frequency approximation to the wavefront under
study Where it is applicable, its strong advantages are that it is able to withstand isolated bad regions and
discontinuities in the sub-region and to preservénitja-spatial-frequency content of the raw data without

propagating phase-unwrapping errors throughout the data.
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14.1 INTRODUCTION

Aberration polynomials are used to describe the continuous shape of the deformations of an optical
wavefront, with respect to an ideal, often spherical, reference s¥hile.the shape of the aperture
under study often dictates the appropriate set of polynomials, it is generally advantageous to use an
orthogonalbasis set. Such a set of polynomials not only enables the decomposition of a wavefront into
experimentally meaningful constituent parts, but also facilitates numerical analysis of the measured data.

The most widely adopted representation for circular apertures is the basiZestiké cicular
polynomialsZ,| of n-th degree (Zernike 1934, Zernike and Nijobar 1954 Zernike polynomials are
only orthogonal for circular apertures. Other polynomial sets include ZeratkmTFischer et al. 1993),
Zernike-Mahajan (Mahajan 1994) for annular apertures, or Legendre polynomials for rectangular apertures.

This chapter presents the main representations of the aberration polynomials that are used to

describe the interferometrically-measured wavefront data.

14.2 ZERNIKE POLYNOMIALS

Much has been written about the derivation and utility of the Zernike circular polynomials (several
excellent references are Born andlf 1980:464-68, Malacara and d&¥é 1992, Carpio and Malacara
1994).This section presents, without proofs, only a brief overview of the most important aspects of the
Zernike polynomialsThere are many notation systems available for representing the Zernike pelynomi
als; this chapter describes the notation used throughout this thesis.

The Zernike polynomials are obtained from the following two properties (Bathi#/aid 952,
1954; Born and\Volf 1980:464):

1.0rthogonality. The polynomials are orthogonal over the unit circle. Usind<ttemecker

deltasymbolgy;,

21 % TT
ﬁkzﬁhwmwﬁ;ﬁm%u (1)

2.Rotation. The mathematical form of the polynomial is preserved when a rotation with a
pivot at the center of the circle is applied to the function. By this propkeycomplex
functionZ, may be separated into radial and azimuthal functions of the varjahledp
respectivelyas follows:

Z, = Ry(p)e"?. @)

nis the degree of the polynomial, anid the anguladependence parametgfis the mini
mum exponent of the polynomid® . n andl are either both even or both odd; tus lis
always even.

The radial polynomials satisfy the relations:
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R=R'=R. ®3)
"RR.pdo=~+ 5 4
JoRoRePaP = Sy O (4)
and can be generated by the expression
n-2m _ - _1\s (n—s)! n-2s
R (p)—Z( Y sl(m—s)!(n—m—s)!p ' ®)

s=0

Since the azimuthal functiom8? are already orthogonal, any ti&y polynomials will be orthogonal if
they do not have the sarhe

A set ofreal polynomialszl, may be written based on the complélx as

UL:%(ZL"'Z;I):RL(Q)COSKP, forl<0 ©

@%(4 —Zn") =R, (p)sinlg, forl>0’

21 Y _ Tt
,[;Io UpUgp dp dg= 5B 7)

Using the fact thah > 0 andn — lis even, modify the definition of the azimuthal componenitlpto

satisfying the condition

form UR.

mEnT_I,orI:n—Zm, (8)

now um= Aquq—Zm{gons}(n -2m)o . 9)

where sine is used for— 2m > 0 and cosine fon — 2m < 0. With the addition of a convenient numbering

system, these become the familiar Zernike polynomials.

14.3 NUMBERING CONVENTION AND COEFFICIENTS
Throughout the body of this text, the following conventions for the representation of Zernike poly
nomials are maintained.
« Numbering convention.An ordering system has been devised (CédReference Manual) to label the

Zernike polynomials using a single, positive intejger replace the pairr{, nt.
Z - AL (10)

In the description of low-spatial-frequency optical aberrations, it is common to specify a set of 37
Zernike polynomials (0 through 36lhe conventional ordering is shownTable 1. Figure 1 shows a

graphical representation of the first 37 Zernike polynomials.
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Table 1: Single index notation for the Zernike polynomials.

j (. m j (. m i (nm j (n,m)
0 0, 0) 9 3, 3) 18 (5, 3) 27 6, 4)
1 1, 1 10  (3,-3) 19 (5,-3) 28  (6,-4)
2 1,-1) 11 4, 2) 20 (6, 2) 29 (7, 3)
3 2, 0) 12 4, -2) 21 (6,-2) 30 (7,-3)
4 2, 2) 13 (5, 1) 22 7, 1) 31 (8, 2
5 2,-2) 14  (5,-1) 23 (7,-1) 32 (8,-2)
6 (3, 1) 15 (6, 0) 24 (8, 0) 33 9, 1)
7 (3,-1) 16 4, 4 25 (5, 5) 34 (9,-1)
8 4, 0) 17 4, -4) 26 (5,-5) 35 (10, 0)

36 (12, 0)

* Real quantities.The polynomials described astictly real quantities based on the 4™ from Eqns. (7)
and (9) As described in the following sections, the symfjab used to represent individual, real, Zernike
polynomials of the variablep (@), with p 00 [0, 1], ande O [0, 2r).

« Leading coeficients. There are two common conventions for the leadingfictexits of the Zernike
polynomials.Throughout this thesis, the leading daéénts of each Zernike polynomial are set to unity
— not including the individual coi€ients of the radial termg" that appear in each polynomial term.
The Zernike polynomials atgoundedn the range [-1, 1T his convenient definition allows the immedi
ate description of the magnitude of individual wavefront aberrations.

The second common convention in use sets the leadinficea®t equal to theariancesof the
individual terms (excluding the constastonterm.)That is,Z is defined with a leading cdefient that
satisfies

(Variancej)2 = 012 2.[;.[02]1212 pdpdp . (11)

Although this definition simplifies the calculation of wavefront variance when the Zernikié-coef
cients are known, it complicates the rapid interpretation of aberration magnitudes by the inclusion of
(mathematicallyirrationalcoeficients in each term.
14.3.1Vector Representation of Zernike Cdigiient Pairs

In several circumstances, pairing Zernike polynomials that share the same radial dependence is
extremely useful in the concise representation of wavefront aberraftuass especially true in the
description of systematic errors (Chapters 5 andt&yre the rotational orientation of a givefeet is
independent of the coordinate system used for measurefheotighout this thesis, a vector notation for
coefficient pairings utilized.

For example, wavefronilt andcomaare represented by the ciigent pairs &, a,) and &g, a7)
of the Zernike series respectively both cases, the two Zernike polynomials they modify have hae cos
dependence in the first term andsitependence in the second tefithis lends itself to a simple vector
notation as follows

Tilt, T = (a4, ay), and ComagC = (ag, ay). (12)
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Figure 1. A graphical representation of the first 37 Zernike polynomials (0 throughngbthe three square arrays

used to generate themis the radius arrag is the azimuthal angle defined courtéwckwise from the x-axis, anal

is the binary sub-domain-defining array which represents the unit circle on the rectangular grid. Points outside of the
sub-domain are undefinefidjacent to each Zernike term are the two-index and the single-index representations.
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14.AWAVEFRONT REPRESENTATION WITH THE VECTOR NOTATION

A wavefrontW(p, @) may be represented by a finite setMf-() Zernike polynomials.

<

W(p.0) =Y a,Z(p.9). (13)
=

On a discrete set of points {p,} or {( p,, @)} in an aperture domain, for each point we have
M
W(p,)=W, =% a;Z;(py). (14)
1=0
A more compacvtector notatiordescribes a point in the wavefront at posifgras a vector on a basis of

Zernike polynomials.

Ezo(Pn)E EBO E
W,=[aoau]g i [ orequivaently, W, =[Zo(p,) -+ Zu(pn)] g} L.
Faw

%M (Pn)E E

On the finite set oN points {p,,}, the wavefroniV,, may be written as a column vectBguation (15) becomes

(15)

oM O DZO(pl) ZM.(pl)EBO

C

I P L
0 oo L (16)

E

N
- 0
W H go(PN) Ly (pN)%M
The dimension of the matrix in Eq. (1i€)M x N.
Within this notation, there are now several “vectavs’can define: the wavefroi{ has a value
for each point in the domain; each Zernike polynomial t&ymay be represented as a vector across the
domain; for a given domain, there is a ve@#t defined on the finite Zernike polynomial basis, spanning

the space defined by the fifgt+1 polynomials; and there is a cfiegient vectora of M+1 elements.

W=[W - Wy, (17a)
A Ezo(Pl) ZM(pl)E

z;=[z(p) - Z(pn)], andz =5 : L F[Zo ], (17b)
Folpn) - Zu(en)H

a=[a - ay]. (17c)

Several of the above expressions may now be re-written in this compact vectortfermave

front representation from Eq. (16) becomes
wT=Za", orw=az". (18)
As usual, the superscriptindicates the transpose of a vector or matrix. In the conventional notation,the

orthogonality condition is
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N
Y Zi(Pn) Zc(Pn) O 8- (19)
n=0
In vector notation, the orthogonality condition may be written as
Z,Z¢ Odj. (20)

To study the variance of a given fit (Chapter 15), we require the definitioneftar normacross
the set ofN measured points.

N
IW|? =y wZ =wwT. (21)
n=1

14.5 REPRESENRATION OF THE ZERNIKE POL YNOMIALS ON A SQUARE GRID DOMAIN
The first step in the analysis of a digitized wavefront must be the establishment of a consistent coordi
nate system used in all stages of the analysis. Modern detector designs make the establishment of a rectang
lar Cartesian coordinate system a natural chéigpropriate to the Zernike polynomials on a circaper
ture will be a representation of thait circle within the chosen domain. Howeyany contiguous or dis
jointed domain(s) of points may be used once an appropriate coordinate system has been edthislished.
step may appear trivial, but there are subtleties in the procedure worthy of discussion. Carpio and Malacara
(1993) have suggested a method of representing the Zernike polynomials in Cartesian codrdaates.
method described here uses a direct representation of the polar coordinates on a square-grid domain.
Beginning with a squar x N domain of pointd, our goal is to establish three array variables
shared by all analysis procedurps®, ando. For each point i, p is the distance from the centéris
an azimuthal angle defined countdockwise from thex-axis, andb is a binary array describing which
points are in the unit circle & 1) and which points lie outside € 0).As an intermediate step, define the
array variables andy in the following way These array variables are linear and are bounded on the
range [-1, 1].

1
R (22)

Here * represents all columns (or rows) from Ntox andy are shown in Figure 2 for anx88 array
This very small array is used only to illustrate the method; the iBtvferograms studied in this thesis
actually occupy domain sizes from 22225 to 860x 860 pixels.

Many computer programming environments are capable of correctly rendering an arctangent into all
four quadrants, using botandy as input aguments, and yielding an angle moduto €omputer systems
without such capacity use thatio of y to x as a single input gument and angles are returned modulo
because sign information is lost in the division. In either @gaskould be defined in the straightforward
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+5/7
+1

+1

+5/7
+3/7
+1/7
-1/7
=37
-5/7
-1
horizontal, xg vertical, yg radius, pg azimuthal angle, ¢g obscuration map, og
xE[-1,1] yE[L1] pE0,V2] ¢ €10,27] 0={0,1}

Figure 2. Definition of p and¢ proceeds from the definition of the intermediate arsagady, illustrated in this
example of an & 8 square grid domain. In experimental applications, these arrays are typically hundreds of elements
wide and contain tens of thousands of domain points.

manney on the range [0,18.

¢=tan"*(y,x), typical modulo 2rtformat , (23a)
0= tan‘l%g alternate modulo Ttformat . (23b)

The definition ofp requires the most caréhe most simple definition qf is

p=Ax*+y. (24)

This definition will be modified below foeven-Narrays, .

It is very important to decidehere the coordinate of a point resides within each square pixel. For
symmetry reasons, we choose tieaterof the squag as the locus of its coordinat@his choice main
tains both 99 rotational symmetry and reflection symmetry about the two axes, featsabdd- and even-
sized arrays diérently.

One fact is immediately:apparent in the even-N case there is no single pixel corresponding to the
origin, and no individual row or column corresponding toxther y-axis. This difference from the@dd-N
case does notfaict measurements in any significant way

Propertreatment of the points at the edges of the domain is the most important aspect of the defini

tion of p. With o defined as
1, p=<1
o=

0 p>0’ =

care must be taken to ensure that the non-zero pointexdénd to the edges of the domain. Based solely
on Eqgns. (24) and (25), this condition would not be met for the even-N arteyswo points at the cen
ter of any side have > 1 and would be excluded, leaving empty rows and columns along eacileege.

following “fix” compensates for this problem by adjusting the definitiop &r even-N arrays:

IF Nis even THEN p'Em_ (26)
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After this normalization, witlp redefined agp’, the

=
maximum value op along the edges is identicalbye. %
To illustrate the ditrences between the even ¢ “g
odd array definitions, Fig. 3 shows the appearanae ¢ %
for an 8x 8 and a 9% 9 domainAfter applying the S
“renormalization” ofEq. (26) to the even-sized arréye
included points ob (that is, the non-zero points) reach ! %
edges of the domain. %
14.5.1Note on Distortion z

The definition of the coordinate system variabl Even (8 x 8) 0dd (9 x 9)

p and¢ presents an opportunity to include compense Figure 3. The definition of the radius arrgy
depends critically on how the unit circle is defined,

for some geometrical systematic errors directly in the and care must be taken to ensure proper behavior at
the edges of the domainhis figure illustrates how

analysis. For example, the radial distortion related tc the ideal representation translates into symmetric

. . even-sized and odd-sized discrete domains. It is
geometry of a planar detector array in a spherical be important for the domain points to reach the edges
of the domain at the points whegye= 1. This condi
tion is guaranteed for even-sized arrays by making
the modification in Eq. (26).

(Section 5.12) can, in principle, be compensated for
automaticallyby re-defining the radial coordinape In
this particular case, a radial positipiin the Detector Coatdlinate Systernorresponds to a polar angi®)
in the sphericaBeam Coatlinate SystenBYy replacingp with y(p) in the coordinate system definition, all
measurements will automatically be made in the Beam Coordinate System.

This treatment is not required; coordinate transformations can be done after the data has been ana
lyzed. Howeverthis process can be simplified by building the transformation into the radial coordinate.
This is especially true of the representation of a measured wavefront using the Zernike polynomial series,

in which a coordinatand coefficientransformation in the presence of a non-linear radius is challenging.
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15.1 INTRODUCTION

Once the raw interferogram data has been processed and an unwrapped wavefront phasemap has
been produced, the wavefront may be interpreted as the composition of individual, constituent wavefront
aberrations. Reconstruction of the raw wavefront data from a limited number of these constituent aberra
tions also serves as a method of filtering the data to contain only the lowest-spatial-frequenecy compo
nents.The goal of this chapter is to describe several methods of wavefront analysis leading to the devel
opment of a novel, expedient variation of a well-established polynomial fitting technique.

The conventional measure of theodness of a fis based on the minimization of the functiph
defined as the ratio of the estimated variance to the parent variance times the number of degrees of free
domv (Bevington 1969:188)The parent variance is characteristic of the spread of the data aboutthe par
ent distribution, for which the estimated variance of the fit describes both the spread of the data and the
precision of the fit.

The individual uncertainty afachindividual data point,, is included in the definition of2. This
fact addssignificantcomplication to wavefront surface fitting computations if simplifying assumptions
are not made. For instance, the basis set of orthogonal polynomials on the measurement domain must be
defined to be orthogonal in the presence of a non-uniform weighting function based on these individual
uncertainties.

One simplifying assumption that is often appropriate in interferogram analysis is that the uncertain
ties of the phase measurements are equal to a coasiantss the measurement domain. (The domain is
defined to include only valid data point®here this assumption is applicable, the funcjgéis simply
proportional to the fit variandglefined in the following section].hus the method of wavefront surface fit
ting described in this chapter is essentially a minimization of the fit variance, based on the raw wavefront
data and an appropriate basis set of aberration polynofftiedschapter describes methods that are general
and may be applied to the orthogonalization of any arbitrary set of basis polynomials on a given domain.
15.1.1Note on Numbering Conventions

For consistency with the Zernike polynomial basis, all polynomial basis “veetg@siumbered
starting from 0; that isXg is the “first” polynomial of an arbitrary basigvhen polynomials up to and
including Xy, are used, then there avi-1 basis vectors. In regard to the Zernike basis, typically pelyno
mials Zy throughZzg are used to describe aberrations in imaging systéhese constitute the well-
known “first 37 Zernike polynomials.”

However on the discreteneasuementdomain, theN measured data points are numbered from 1 to

N. Thus, the position vectogs throughpy describe the measurement domain.
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15.2 MINIMIZING THE FIT VARIANCE
The process of wavefront surface fitting described here is based on minimizatioriitof the
variance The fit variance is defined for a measured wavefiireind a fitW' based on an arbitrarfmite
set of basis polynomials{}. The chosen setX;} may be any convenient set and need not be orthogo
nal. The following discussion is based on the method described by Fischer et al. (1993), and uses the vec
tor notation described in Chapter 14.

In general, surface fitting on a basis of polynomial functions may be represented as
W= ¢X; =cX’. 1)

The individual vectorX; range over the set &f measurement point$he set £} are the scalar polyro
mial coeficients and form the elements of the dmént vectorc. Over a discrete domain, where the fit

variance is defined (Bevington 1969:137) as

1 N 2 1 2

2 — T I

f=—" -W,) =———|wW'-Ww|". 2
N—M—lnzl(w’ h) N—M—l" " @

N is the number of points in the measurement domain,Mrd)(is the number of parameters used in the
fit W'.

Inserting the wavefront fit of Eq. (1) into Eq. (2), we define for convenience a scalar q&qrtiyor

tional to the variance (and also proportionak#y
~ 2
$=(N-M-1)s?cx" -w| . 3)
The minimization of? (or, analogouslyof S) is based on the selection of the optimum set of-coef
ficientsc. If a perfect fit were possibl&would equal zero. Since there will always be #edénce
between the measured wavefront and the wavefront reconstructed from$velfipe non-zeroThe

optimization thus requires finding a global minimumSafith respect to each cdient c,. This mink

mum occurs when the partial derivativeSfvith respect to eact is zero.

O:E:i
oc, 0c

-~ 2 -

ex™ -w" = z(ch —W)XI . 4)
Thus, for each k, XX = WX] . (5)
Equation (5may be generalized for dlas follows:

eXTX =WX, or o%co = WX . (6a)

l ~ ~
—XTX. (6b)
o

using the definition o
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As described earlieo is the (uniform) uncertainty of each data point in the measured wavéftent.
symmetric matrixx is called thecurvature matrixbecause it is related to the curvaturé&sgbr s2, or x?)
in coeficient space. For clarifyjeq. (6a) may be expanded and re-arranged in matrix form:
gKo_XE XM_XE Ego . gN_XE :
0 oot C ()
KoXm - XuXuHdwE VX0t
It is important to note that the curvature matrix haglependencen the measured dafBhe matrix
depends on thédomainof the data, but not on the measured vallies. measurements are contained in
W, on the right-hand-side of Eqns. (5) through THis fact may be exploited to improve computational
efficiency in situations where many separate wavefront measurements are performed on the same domain
Solving forc may proceed in one of three ways. One way is to assume that the polynoq}ials {
are orthogonal. If there are enough sampled points in the domain, this may be a good approximation; but
it can introduce significant errors, especially for the ficiehts of the higheordered polynomial terms.
A second method requires the inversion of the curvature matrix. Great care must be taken because such
inversions are notoriously ill-conditioned (Conte and de Boor 1980:249) and therefore extremely sensitive
to small changes in the input conditioibe third and most sound method is to perform a transformation
to a polynomial basis that is orthogonal over the domain, where the curvature matrix becomes diagonal,
and makes solution straightforwaiithis third approach is typically accomplished using the Gram-
Schmidt method (\Mhg and Silva 1980, Fischer et al. 1923) three methods are discussed in detail in

the following sections; error estimation is discussed in Section 15.6.

15.3 ORTHOGONAL BASIS ASSUMPTION
The minimization problem is particularly simple when the polynomi&ﬁ &re orthogonal over

the measurement domaifhe curvature matrix in Eqg. (7) becomes diagonal, and the solution is

C:EWXEZ WXLZ[_ 8)
HXo X" E

This is essentially thprojectionof the measured dat onto the orthogonal basis s&his approach
requires the fewest calculations, and computationally may be the fastest method to perform.
When the discretized domain is a close approximation to an unobstructed circular aperture and when
only the lowest-ordered terms are of interest, this method may work quite well. Hpespeience has
shown that significant errors should be expected for certain polynomial Warwere define a given term

asunbalancedf the sum (or integral) of the term over the domain is not zero; equivalsatly a term
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fails to meet the orthogonality condition that its scalar product with the (congistotterm is zero.

N
Z,25 %0, Orzzj(pn)io, whenj#0 O Z;isunbalanced. (9)
n=1

For example, consider a measured wavefvdntonsisting only of a non-zero constant (pistov@r the
domain.The solution ot in Eg. (8) would yield erroneous, non-zero ¢ioétnts for any term that is
unbalanced.

Specific polynomials that routinely causefidifilty are the cylindrically symmetric terms (defocus,
spherical aberration, etc.) and those wihoB 59 angular dependence. Because they do not match the
symmetry of the rectangularly gridded domain, these terms are usually unbalanced. Over an unobstructed
and symmetric aperture, the terms witbr 20 angular dependence (tilt, astigmatism, and carajsu

ally balanced and orthogonal because they match the symmetry of the domain.

15.4 MATRIX INVERSION METHOD
To solve forc using matrix inversion, post-multiply both sides of Eqns. (6b) or (7) by the inverse

of the matrix on the left-hand-side (the curvature matrix):

Al A A1 ~
czwx(xTx) . or c=o?WXe, (10)

4 01 oot aforo)t
using the definition 85a1=5? TXE =02(XTX) . (11)

The inversee of the curvature matrig is also a symmetric matriXhis matrix is called therror matrix
for its role in error estimation, described in Section15.6.

The reliability of the matrix inversion must be determined on a case-by-case basis. Great care must
be taken to ensure that the matrix is not ill-conditioned. Experience has shown that the matrix inversion
methods are typically unreliable, owing primarily to the fact that the aberration polynomials, defined on
the discrete domain, are not orthogofidle presence of thes@balancedolynomials leads to non-zero

off-diagonal elements iﬁﬁ(, making the matrix ill-conditioned.

15.5GRAM-SCHMIDT METHODS OF ORTHOGONALIZA TION
Beginning with a convenient set Bfarbitrary polynomials on the measurement domaij,{the
goal is to find an orthogonal basis setpolynomials {YJ—} and the transformation matrix between the
two. A measured wavefront is fit on the orthogonal polynomial basis to reduce the uncertaintiesdn the fit
ting procedure. Often, the orthogonal sé{{is only used as an intermediate part of the wavefront fitting

and the final results are given as a fioeit vectorc defined on the convenient basijI.
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{X;} convenienbasis c coeficient vector inX-space.
{Y;} orthogonalbasis, calculated fronx} b coeficient vector inY-space.

The Gram-Schmidt method of basis orthogonalization is recursive: each successive polypmnial
added to the previoug-{) polynomials in such a way that all of the terrygi{are mutually orthogonal.
EachY; begins withX;. Then a linear combination of the previous polynomials is found such that subtrac
tion from X; yields a new orthogonal polynomial.

It is worth reiterating that the new set of polynomials and the accompanying transformation matrix
are determined only by tldomainof the data, and not by the measured wavefibfhile the determina
tion of the new basis may be computationally intensive, this basis set and transformation matrix may be
calculated once and stored for future, rapid application to a series of related measurements.

Two Gram-Schmidt methods are presented herierigi§ only in the way the transformation
matrix is determined. In both, the transformation matrix is developed in parallel with the calculation of the
new orthogonal set: the individual projections become the elements of the transformationTimeadtrix.
method which appears in the literatureafWf and Silva 1980, Fischer et al. 1993) requires that this-lower
triangular transformation matrix be inverted (typically by the method of back-substitution) to determine
the coeficients of theoriginal polynomials from those of theeworthogonal polynomials. In a newore
efficient approach introduced here (Section 15.5.2), the projections are used to develop the inverted
matrix directly.
15.5.1Gram-Schmidt: Conventional Method

The orthogonalization process begins with the definition
Yo =X (12)

Then each successive teMis projected onto the new basis and the subtraction of this projection from

X; yields a new orthogonglolynomial; the individual projections become the elements of a transforma

tion matrix.
-1y T i1y T
Y =X -§ —L=2v. =X, - L > v, j>0. (13)
XN T T

The of-diagonal elements of this transformation matrix may be read directly from Eq (13), as the scalar

coeficients ofY . As an intermediate step we define the malrjwith off-diagonal elementB;s.

_X)Yg

a7
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j-1
This allows us to write Yj=X;- Z DjsYs. (15)
s=0
These two basis sets form equivalent representations of an arbitrary waVéfront

W=k by (16)

Since the set of polynomialsq} is orthogonal, we may apply Eqg. (8) to fihdsubstitutingo for c and

Y] for X]’
b:EWYi WY“TAZE (17)
HIYol Ivul™E

Finding the codicientsc requires back-substitution. Beginning with Eq. (16) in matrix form,

0o 0O
Vo0 X0 P O - othv, C
0.0_0.0 . C
o:oo g Pe Pa 00 Ontp (18a)
BwE XwB O - : . mE
B:)MO DMl DMM—l OH
YT=XT-DY". (18b)

UsingD to represent the matrix with the elemedfsandl as anM x M identity matrix, Eq. (18b) can be

solved forY:
YT=(+D) X" =GX". (19a)
Here, the transformation matrix is defined as
G=(1+D)™. (19b)
Substituting Eq. (19a) into Eq. (16), the damiénts are related by
c=b(l +D) ! =bG. (20)
Here again, care must be taken in the inversion to ensure that the matrix is not ill-conditioned.
15.5.2A More Expedient Method
A more expedient method proceeds in the same way as the Conventional Method, presented above.
The diference is in the way the transformation matrix is developed from the projedi@ngansforma
tion matrixG enables us to determine the orthogonal polynomi¢fsffom the arbitrary setX;}, and

also provides a means to rapidly transform ficiehts of {Y j} to coeficients of {Xj}. The definition and

utility of G are shown in Egns (19) and (20). Expanding Eq. (tf®a)a summation,

. (21)
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To begin, the first polynomials of each basis are made equivalent, as bé®ffest diagonal
matrix element is set to 1to reflect this equality
Y, = Xo. (22)
Ggo = 1. (23)
Recursively as before, the next polynomia{§> 1 are formed from X4}, subtracting the projection of

onto the previously calculated/{.;}.

XY XY
Y =X -F 2y, =X, - L > v, j>0. (24)
T T

However since we are interested in keeping the expression in term§}ofde substitute the previously

calculatedy g into Eq. (24), as follows:

X DS GstXtDT
2B x P B 0 ox,
V=X - 2t j>0. (25)

O
27 N RxET

[Iv 4P is simply a constant that can be calculated once for ®akhile on paper this may loakore

complicated than the Conventional Method, it is in fact very straightforward to implement in a computer
program. Utilizing matrix row-arithmetic, we have a procedure as follows.

Performing row-arithmetic (Step &5 the {;} polynomials are calculated enables us to calculate
the transformation matrix directlyithout subsequent back-substitutidn.improve computational &f
ciency the norm of each of the polynomiadg should be calculated only once and stored for repeated
future use.

For wavefront fitting, the co@€ientsb of {Y;} are determined as before, from Eq. (17). Ntve
computation of the cotientsc of {X;} requiresno matrix inversionSinceG is determined directlyfrom
the orthogonalization procedure, Eq. (19a) can be used to compute the orthogonal basis polynomials from
the original basis and Eq. (20) allows the ioefts of {X;} to be determined from the cdiefents of {Y}.

Procedure: Expedient Gram-Schmidt Othogonalization

1.600 =1
2.Loop j from 1 toM

4. Loopsfrom 0 to (-1)

S. Ys=[GClrowsXT

X;Yd
2

vl

o

[G]rowj < [G]rowj - [G]rows
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15.6 WAVEFRONT FITTING ERROR ANALYSIS

In general, interferogram wavefront surface fitting error analysis proceeds along several fronts. One
goal is to describe the success of a reconstructed-wavefront fit in accurately representing the Aaw data.
second issue is specifying the agreement among a series of similar measurements, and third is understant
ing the inherent limitations on the measurement precision, based on the known or measured uncertainties
in each element of the systehis particular section addresses only the quality of the polynomialwave
front fitting, based on a measured wavefront phasemap and a given or a calculated basis of polynomial
functions. First, the general approach, applicable to any of the previously described methods, will be
explained; the error estimation is significantly simplified in those analysis methods that employ the Gram-
Schmidt orthogonalization.

The most convenient starting point is to determine the uncertainties in the fittifigientfb of
the orthogonal basisYﬁ}. Following the conventional method of error propagation with Gaussian error
distributions, the estimated uncertaimsjl in an individual fitting codfcient bj is given by a sum of

squares of the individual uncertainty contributions of each point in the measurement domain.

N E 00 f0 N oo, of

% =2 OrEwH e 2w @9)

0, is the estimated uncertainty in the measurement of an individual wavefront point. By a previous
assumption (Section 15.1), the individual uncertainties are considered to be equivalent andoeguad to
the domain of valid data poinfEhe partial derivative may be evaluated from Eq. (10), modified foxd

YT, Heree is evaluated forY;}, the basis under consideration.

b= W\?(\?T\?)'l =o?WYe, with e=0?(V7V) g (27) and (28)

Oob; O_ 1

WH— — z €iY(Pn) (29)

Substituting Eq. (28nto Eqg. (26), the expression for the uncertainties reduces considerably:

1 M M M M
gj = _2 Z Z jksjmzYk pn pn : Z Z ksjmakm . (30)
k=0 m=0 k=0 m=0

Recalling the definition of the curvature matoixor the basis Yj},
=L (9Ty
o= ?(Y v), (31)

and the fact that the error matgexs the inverse of,
) M M M
Oy, ZXSjkzsjmakm:zsjkajkzsjj, (32)
k=0 m=0 k=0
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o2 =g, =0 %\? v) 151 (33)

When the measurement uncertaiatgf each point is unknown, it may be estimated from the variance of

the fit (Bevington 1969:154) as follows.

1
op=0? =8’ = —— W =W, (34)

As before N is the number of points in the measurement domim1j is the number of parameters used
in the fit, andw' is the wavefront fit reconstructed from the dmént vectorb. Combining Egns. (33)
and (34), the estimated uncertainty in an individual fit focieht bj is

O.2 _8 _"W' W" Y Y
b ~ N-M-1 (35)

Up to this point, the orthogonality of the polynomial basis has not been considered; thus the error
estimation method up through Equation (34) is generally applitalaley polynomial basis and any set
of fit coefficients.When {Y;} is an orthogonal basis, then the curvature matrand its inverse the error
matrix € are both diagonal, making the matrix inversion trivial. Equation (33) reduces to these equivalent

expressions.

ol o 1 wewp 1 VW]
j T T —M— 2
YT [ Ny MLy

O (36)

Here, the estimated uncertainties in the fit fioeits of the orthogonal basis polynomials are easily cal
culated. Howevetrthe orthogonal basisv{ } is often used only as an intermediate step in the calculation

of the fit coeficients of the more convenient basbst, from which the orthogonal basis was calculated.

Since the transformation between the two bases is known, calculation of the estimated uncertainties in the
original basis codtients is verystraightforwardG is determined during the calculation of the orthogonal
basis. From the definition @, Eq. (19a),

M
c=bG O Cj = z kajk . (37)
k=0

Using the method of error propagation and the fact@laas no dependence on the measured wavefront,

M M
2 _
%rgw%ﬂ 2,8¢ %)

From Eq. (10b§k is known in terms onj}. This is easily converted to{{}:
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M
DT T >

M
Z G|kX

From this expression, the uncertainties in the fittingfmdefts of the convenient basis are easily calculated.
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